

Technical Design Document

Teixos

William John Lautama

1

Project Overview 5

Core Mechanic Overview 5

Target Platform 5

Game Mechanics 6

Gameplay Flowchart 6

UML Diagram 9

Movement Mechanics 10

Controls 11

Core Gameplay Mechanic 12

Mechanic Overview 12

Mechanic Description / Functionality 12

Sequence Diagram 15

UI Design 15

Main Menu UI 15

UI Overview 15

UI Description / Functionality 15

UI Wireframe 16

In-Game UI 18

UI Overview 18

UI Description / Functionality 18

UI Wireframe 19

Dynamic Materials 20

Dynamic Material 1 - NoiseFlow 20

Overview of Effect 20

Effect Description 20

Inspiration / Reference Images: 20

In-Engine Screenshots: 21

Properties and Values 22

Node Graph 23

Dynamic Material 2 - Water 26

Overview of Effect 26

Effect Description 26

Inspiration / Reference Images: 27

2

In-Engine Screenshots: 28

Properties and Values 29

Node Graph 30

Dynamic Material 3 - Glowy 36

Overview of Effect 36

Effect Description 37

Inspiration / Reference Images: 37

In-Engine Screenshots: 38

Properties and Values 38

Node Graph 39

Dynamic Material 4 - Ground 42

Overview of Effect 42

Effect Description 42

Inspiration / Reference Images: 42

In-Engine Screenshots: 43

Properties and Values 44

Node Graph 44

Physics 47

Overview of Interaction 47

Interaction Description 47

How the Interaction Works 47

Inspiration / Reference Images 48

In-Engine Screenshots 49

Properties and Values 51

Artificial Intelligence 53

Overview of AI 53

AI Description 53

AI Abilities 53

Inputs & Senses 54

AI Senses 54

Blackboard Values 54

Behaviour Tree Graph 56

Niagara Particles 57

3

Niagara Particle Effect 1 - BlackHole 57

Overview of Effect 57

Effect Description 57

Inspiration / Reference Images: 57

In-Engine Screenshots: 58

Properties and Values 59

BlackHole_Core Emitter 59

Core_Particles Emitter 61

Ring_Particles Emitter 63

Swirl Emitter 65

Niagara System / Emitters Breakdown 67

BlackHole_ Core 68

Core_Particles 68

Ring_Particles 69

Niagara Particle Effect 2 - RockTrail 69

Overview of Effect 69

Effect Description 70

Inspiration / Reference Images: 70

In-Engine Screenshots: 71

Properties and Values 71

Main_Rock_Trail Emitter 71

Small-Rock_Pieces Emitter 73

Niagara System / Emitters Breakdown 78

Main_Rock_Trail 79

Small_Rock_Pieces 79

Sequencing / Cinematic 79

Overview of Sequence 79

Camera Angles / Properties 80

Scripted Events 89

Storyboard 90

MetaSound 97

Overview of Sound Effect 97

Effect Description 97

4

Inspiration / Reference: 98

Properties and Values 98

MetaSound Diagram 99

5

Project Overview
The game focuses on a wall running mechanic combined with high speed traversal in a parkour setting. The

aim is to implement this core mechanic efficiently and make it engaging for the player. The game is being

developed for PC as it allows for smoother execution of the wall running mechanic with the keyboard, and

the FPS format is easier to control with a keyboard and mouse compared to consoles. This aims to provide

a comfortable gaming experience for players.

Core Mechanic Overview

The core mechanic of my game is the speedy wall running mechanic. A wall running mechanic is not a new

concept in the games world but every game that has a wall running mechanic implements the wall run

mechanic differently. A wall run mechanic is not easy to implement smoothly and be presented to the

players in a good way, that’s why I want to focus on implementing it with great efficiency and actually

makes the player want to play the game based on the core mechanic.

The other thing that is in my core mechanic is speed. Since the basic idea of my game is a parkour game

and the prompt that I chose is “A device that allows for fast traversal.” This leads to the player having fast

running capabilities that could lead to an engaging experience with the provided levels as well.

Target Platform

The platform that I am making this game for is PC. This is due to the fact that with pc, and the keyboard

that are attached, the wall running mechanic can run smoother since it is very focused on pressing multiple

keys on the keyboard at the same time. While this effect can be achieved in other consoles, it is harder to

do so, especially on handheld and consoles that rely on the analog stick for movement.

Since this game is using the FPS format, it is also easier to move on PC rather than in console since the

player is using a keyboard just for controls and a mouse solely for camera movement rather than the right

analog stick for some consoles. This can be seen by the comparison of the amount of people who play

games on the FPS genre on the PC and on consoles. This could lead to a more comfortable gaming

experience for the players overall.

6

Game Mechanics

Gameplay Flowchart

7

8

9

UML Diagram

10

Movement Mechanics

The camera movement of the player follows the player’s mouse cursor. This movement was provided by

the fps template itself. For the movement mechanics, the player is able to do basic movements and also

jump movements. The basic movements are the player moving to the right, left, forward, and backwards.

This movement was done through the fps template. Even though the jump function is also implemented in

the first person template, I decided to implement my own jump mechanic. The function that I used for my

jump mechanic is CallJump(). I initialise the variable PlayerVector and in the CallJump() function, I set the

PlayerVector based on where the walls are when the player wall runs (left of the player or right of the

player. The usage of the PlayerVector can be seen from when the player actually jumps.

Before I mention the usage of PlayerVector, it is worth mentioning that there is an if statement before it

using the variable JumpsLeft to limit the amount of jumps the player is able to take. There is also another if

statement to determine if the player is wall running or not. If the player is wall running, rather than making

11

the player jump upwards, the player jumps the opposite side of the wall. For example, if the player is wall

running with the wall on the right side of the player and then jumps, the player will jump towards the

upward left side of the player. Then there’s also an else statement in the end of the if statement that allows

the player to jump normally. After all of this happens, the variable JumpsLeft then gets decreased by 1. For

the JumpsLeft variable it starts with 2 and will reset to 2 every time the player lands or ends the wall run

since I want the player to double jump every time.

There is also a sprint movement that the player is able to do when the player holds shift. This makes the

player move faster than the normal walking method. There are some limitations on the movement, with

the jumping movement, it could be better by allowing the player to jump towards anywhere the player is

facing instead of the preset jump methods. The other thing that limits the movements are the collisions in

the game. There are a lot of objects and walls in the game that could limit the movement. This could also

be a potential gameplay feature that stops the player from continuing the level.

Controls

Mapping Action Description Keybind Modifiers

LookMapping Look Around

Used to move

the character’s

camera based

on the mouse

cursor

Mouse

Movements

Modify

ControllerYaw and

ControllerPitch input

WalkingMapping Move Forward

Used to move the

character forward

W SwizzleAxisValue

WalkingMapping
Move

Backwards

Used to move the

character

backwards

S
SwizzleAxisValue,

Negate

WalkingMapping
Move to the

Right

Used to move the

character to the

right
D

Change

ActorRightVector

WalkingMapping
Move to the

Left

Used to move the

character to the

right

A

Change

ActorRightVector,

Negative

12

JumpMapping Jump

Used to make the

player jumps

depends on

which state the

player is in

(Wall Running or

Normal)

Space Bar

SprintMapping Sprint

Used to make the

player walk faster

(sprint)

Shift

FireMapping Shoot

Used to shoot

projectiles

Left Mouse

Button

SlowDownTimeM

apping

Slow Down

Time

Used to slow

down time
Q

SwitchGun1
Switch To

Bouncy Gun

Used to Switch

To Bouncy Gun

When Shooting
1

SwitchGun2
Switch To

Black Hole Gun

Used to Switch

To Black Hole

Gun When

Shooting

2

SwitchGun3
Switch To Dual

Gun

Used to Switch To

Dual Gun

When Shooting
3

Core Gameplay Mechanic
Mechanic Overview

My core mechanic in the game is the Wall Run Mechanic. The mechanic allows the player to wall run on

every wall smoothly. This mechanic is still in the early stages of development so it could be improved. The

player is also able to double jump and jump from the walls to other walls to continue wall running. The

player’s sprinting mechanic also affects the wall run mechanic and it can affect the pacing of the game.

Mechanic Description / Functionality

There are a couple of ways to implement the wall run mechanic but I am going to describe the method on

how I did it. So firstly, I initialised an extra capsule component and resized it so that it is bigger than the

13

player capsule collider. Then I made an OnOverlapBegin() function and an OnOverlapEnd() function for the

Capsule

Component. What the OnOverlapBegin() function does is that it checks if the OtherActor that it is colliding

with has the tag “Wall”. If it does, then I modified the PlayerMovement in 3 different ways :

- PlayerMovement->AirControl = 1.0f;

This code allows the player to have full control over the movements while in the air (in this case while wall

running)

- PlayerMovement->GravityScale = 0.0f;

This code allows the player to have no gravity while doing the wall run. This code is implemented to

prevent the player from falling over when doing the wall run. - PlayerMovement-

>SetPlaneConstraintNormal(FVector(0,0,1));

This code is called to constraint the player from moving up and down. This will make it feel like the player

is walking on the flat ground. - bIsWallRunning = true;

This code is called to change the player state to the player currently wall running. - JumpsLeft = 1;

This code is called to reset the jump mechanic to just 1 because the double jump reset only happens when

the player lands.

After those lines of code are called, the function WallTilt() is called and in that function, with raycasting, the

player will be able to tell which side the wall is on when the player is running. Basically, there is a line

that will be called every time that WallTilt() is called. The line will be located on the right side of the player

and if the line is colliding with something that means, the wall is on the right side of the player otherwise if

the line is not colliding then the wall is on the left side of the player. This is done to set the variable of

WallTiltAngle to the appropriate variables to prepare the player to tilt the camera everytime the player

does a wall run. From the WallTiltAngle variable, a variable called TargetRotation is also adjusted and set

based on the WallTiltAngle variable. This then will affect the code in the Tick() function and using

AddControllerRollInput, the camera will be rotated until it reaches the TargetRotation which is the tilted

values from before.

On the OnOverlapEnd function, the AirControl, GravityScale, and PlaneConstraint of the player is set to the

default values since the player is not wall running anymore. The boolean variable bIsWallRunning is also set

to false and the TargetRotation is set to the OriginalRotation variable which was called in the constructor to

rotate the player’s camera back to the original position using the method in the Tick() function.

There is also a limited wall run duration mechanic that allows the player to wall run with a limited amount

of time. The variable WallRunDuration is called first and set as a number then when the player is wall

running, the if statement in the Tick() function is called and decreases the value of WallRunDuration by 1

each tick.

14

15

Sequence Diagram

UI Design

Main Menu UI

UI Overview

In my main menu UI, the buttons and the functionality of the menu is very basic. Main menu in a video

game is very crucial since it marks the start of the playthrough of each player. A good main menu is really

important to grab the player’s attention and to make the player motivated to start playing the game. The

interesting aspect of a main menu can be achieved by the style of the button, the background images or

video, the title, etc.

UI Description / Functionality

The main menu that I made in my game is very basic. It has 3 buttons in total, the Start button, the Options

button, and the Quit button. The options button hasn't been customised yet so it does nothing at the

moment but it is planned to have a volume slider, brightness slider, and the credits of who made the game.

The start button transitions the player to another scene which is the first level but in this case it's called the

FirstPersonPlayerMap. The quit button quits the game when pressed. Despite being basic, these buttons

and functionality serve its purposes so it doesn’t matter if it's basic or not. The functionality of these

buttons are made in blueprints. The title is also there with it being “Teixos.”

16

UI Wireframe

Background Image : Generated by Dall-E Mini 2

Robot Image : Generated by Dall-E Mini 2

The buttons are made using the UI widget functionality made in Widget blueprints.

17

- The Background image is adjusted with the Anchor so that it fills up the whole screen.

- Horizontal Box : Middle Anchor, Position X = -250.0, Size X = 500.0, Offset Bottom = 150.0

- Vertical Box : Middle Horizontal and Vertical Alignment, Top and Bottom Padding by 40.0

- Logo Image : Fill Horizontal and Vertically

- Title Text : Center Align Horizontally and Vertically

- Vertical Box : Fill Horizontally and Vertically, Left, Right, and Bottom Padding by

50.0

- Start Button : Fill Horizontally and Vertically, Bottom Padding by 20.0

- Start Text : Center Align Horizontally and Vertically, Left and Right Padding by 4.0 and Top and

Bottom Padding by 2.0

- Options Button : Fill Horizontally and Vertically, Bottom Padding by 20.0

- Options Text : Center Align Horizontally and Vertically, Left and Right Padding by

4.0 and Top and Bottom Padding by 2.0

- Quit Button : Fill Horizontally and Vertically, Bottom Padding by 20.0

18

- Quit Text : Center Align Horizontally and Vertically, Left and Right Padding by 4.0 and Top and

Bottom Padding by 2.0

-

In-Game UI

UI Overview

The In-Game UI that I have in my game is pretty simple but incredibly useful to the players. It is also worth

mentioning that In-Game UI needs to be minimal in size but still visible clearly to the players. This is to

decrease cluttering in the player’s screen and to keep the player’s comfortability of camera viewing.

UI Description / Functionality

I have a total of 4 in-game UI in my scene which are : Health bar, jump count, wall run bar, and a switching

gun UI. The health bar is very self explanatory which what it does is gives the player a health amount and

decreases when the player gets hurt. A method of the player getting hurt has not yet been implemented

since there are no enemies yet but it is going to be planned in the future. For the coding side of it, I used

BindWidget with class UProgressBar for the HealthBar, UTextBlock for the Health Label. I also used

NativeConstruct() to initialise the widget and used the functions that I made to update the values of every

tick depending on the values that were set to the HealthBar which is the value Health. After that, I made a

widget blueprint with it being the child of the C++ class of the HealthBar class and adjusted the UI design

there.

The jump count is a number that indicates the amount of times the player can jump. In the future, this is

going to change to some picture or some icons. For example, if I have 2 jumps left that means there are 2

jump icons on the left side of my screen. The Wall run bar is a bar that tells the player how much longer

they can wall run. This is very useful and adds constraint to the gameplay so that it adds extra challenge to

the player and makes for an interesting gameplay experience. For the coding side of both of the UI, it is

very similar to the health bar UI. I used a UProgressBar for the WallRunBar and UTextBlock for the

JumpCountText. I also used UImage for the SwitchGunImage and the UTexture2D to change the images to

my choice of guns. I used

NativeConstruct() to initialise it and then used the functions that I made to update the UI with the variables

which are the WallRunDuration and JumpsLeft. For when changing the gun icon, I used

SetBrushFromTexture to do it.

19

UI Wireframe

The Red Bar : The Red Bar is the Health Bar

Numbers besides the red bar : The numbers represent the amount of health the player has.

Blue bar : The Blue bar represents how long the player can wall run left. It is currently full since the player is

not currently wall running.

Number above the blue bar : The numbers represent the jump counter and tells the player how much jump

the player has left. It is 2 currently since the player is on land and has not jumped.

The Icon Right Next to the Number : It represents which type of gun the player is using.

- Size Box for WallRunBar : It is anchored to the bottom, has a -100.0 Position Y, Offset Right of

1000.0, and Size Y of 100.0

- Wall Run Progress Bar : Fill Horizontally and Vertically and Padding on Left and Top with 20.0

- Size Box for JumpCountText : It is anchored to the bottom left, Position X of 20.0, Position Y of -

200.0, Size X and Y of 100.0

- Jump Count Text : It is Left Align Horizontally and Bottom Align Vertically.

- Size Box for Switch Gun Image : It is anchored to the bottom left, Position X of 130.0, Position Y of -

200.0, Size X and Y of 100.0

- Switch Gun Image : Fill Horizontally, Bottom Align Vertically

20

Dynamic Materials

Dynamic Material 1 - NoiseFlow

Overview of Effect
This effect is called NoiseFlow because it is filled with the Noise Node which is just a random veins of

colours throughout an object. It also flows through an object that it is implemented in. This object has 2

different colours in 2 different locations of the materials which are the colour red on the outer part of it

and the colour blue on the inner part of it. This material is used for the walls that the player will be wall

running on. This material wall appears as a sphere mask on the wall and on where the player specifically is.

This is done to increase the emotional impact of the wall running and to give the player a sense of

satisfaction and aesthetics when they are wall running. It also follows the player which adds the extra

impact on it. Since the colour of the material originally is black when the player is not near it, it adds to the

contrast of when the player is touching it and when the player is not.

Effect Description
The effect is just a collection of big chunks of noise that moves in a different direction based on which layer

it is. If it is the red part of it which is the outer colour, the movement speed of it is 10.0 by X and 5.0 by Y

while the blue part of it which is the inner colour, the movement speed of it is 50.0 by X and 30.0 by Y. I got

the inspiration for the effect from watching youtube explanations on nodes and after I found out the noise

node exists, I experimented with it. I also just finished my other unit’s assignments “Immersive

Environment” and I just made a natural environment that consists of just emissiveness so I decided to try

and make a really cool material just from emissivity. I also want to limit myself from using custom textures

since I realised there’s a lot of cool things I can make without using textures in this material.

Inspiration / Reference Images:

21

This squiggly motive is what I used for my other assignment and after I figured out I could do squiggly

things with the noise node, I immediately thought of this.

https://youtu.be/ut80qnOtNRw

This youtube video helped me in the creation of the material of the noise flow itself.

In-Engine Screenshots:

So basically, as the player goes closer to the wall, the material change will appear. The change depends on

how far the player is from the wall. If the player is not close enough, the blue part of the material will not

appear clearly as it can be seen from the image below.

But when the player touches it, the blue part will fill the sphere mask near the player and the red part will

only be located on the outer part of it.

https://youtu.be/ut80qnOtNRw

22

Obviously, it's really hard to showcase the whole effect of when the player is touching the wall since the

game is in first person so the player is unable to see the whole sphere mask, but that from the screenshots

that has been provided, it is clear enough on how it works without showing the full picture of it.

Properties and Values

Property Description of Purpose Value

MpcCollectionInstance

(“Location) The purpose of the

MpcCollectionInstance is to access

the Vector variable inside called

“Location.” It detects where the

player is on the map and how close

the

player is to the materials that use

the “Location” variable from the

MpcCollectionInstance.

The value of it is

dependent on the actor's

location.

23

Node Graph

This is all of the grouped material nodes in this material. All of it will be explained individually.

The first node is very self explanatory. It is just a black colour node for the original colour of the material

before the interaction.

24

This next one is a bit more complicated. It starts with the Absolute World Position node which outputs the

absolute world position of a pixel on a mesh in the scene. It is also divided into 2 RGB masks. The R mask is

not adjusted so it just connects to the append node but the G and B mask is adjusted with the Panner

which moves the material component with the speed of X 10.0 and Y 5.0. It is then connected to the

append node.

The append node then is connected to the Noise node which displays the veiny and flowy art of it. I also

lowered the scale and the levels of the noise so that it looks thick and big unlike the regular small and thin

noises. Then, I used the 1-x node to flip the black and the blue colour of the material and then I used the

power x2 node to brighten up the colour a little bit. Then I connected it with the multiply node with the red

colour which has the values (1.0, 0.009844, 0.0).

The inner colour part of the material is fairly similar with the outer part. The only difference with it is the

paneer speed which is (50.0 X and 30.0 Y) and the blue colour which has the value (0.0, 0.09332, 1.0).

25

This part of the nodes is a bit trickier than the rest. Basically it takes the value of “Location” from the

MPC_Collection which was adjusted in the code based on the player’s location, then it connects to the RGB

mask. It also has an Absolute World Partition and 2 other parameters (300.0 Radius and 0.3 Hardness). All

these 4 nodes are then connected to a Sphere Mask which gives a Sphere Mask Dynamic Change to

material whenever the player is near the object. The SPhere mask then is connected to the Multiply Node.

The other thing that is connected to the Multiply node is the Motion_4WayChaos function. Basically what

it does is that it makes the outer edges of the mask ripple and it adds this buzzing effect of it similar to a

portal. The value of the Speed and Division of it are 1.5 and 0.28. It is also connected to a Texture Object

that is provided by the engine which is called T_Perlin_Mask (See Image Below).

Then I multiplied it again by 4, added it to the power of 4 and then clamped it to finish off the effect.

26

Then, I used the 3ColorBlend function and connected the previous nodes to it. I connected the original

colour to the A(V3) part, the outer red colour to the B(V3) part, the inner blue colour to the C(V3) part, and

then the Player Location Masking to the Alpha(S). Then I connected the 3ColorBlend node to the Emissive

Color to make the material pop.

Dynamic Material 2 - Water

Overview of Effect
So basically, this material is a stylized single layer water material. Having water in a game is always a cool

feature and I added this to make it look cooler. In one of the levels, the player has to fight enemies that are

walking on single layer water. This creates a sense of variety of terrain in the game. Ranging from regular

looking floors, to water, this keeps the player engaged when playing the game. This makes the parts of the

area that has a single layer water in it seem more interesting and different even though the difference is

just adding water with the same ground textures. This material is the most complex material that I made

since it has the most nodes connected to it. It has ripple effects, spot marks, water murkiness, etc. It also

has the player location masking since the water around the player becomes clearer when the player is

walking on the water.

Effect Description
The effect of the water is basically inspired by stylized water in video games. I also stumbled upon a

youtube video that explained it perfectly on how to make it and what each node does. I followed the

27

tutorial from the video and I adjusted it accordingly so that it fits better to my game. I didn’t want to make

the water too realistic since the aim of my game in the first place is not to be realistic. The water has a blue

colour overall with a ripple effect, water murkiness, water scatter and opacity spots.

Inspiration / Reference Images:

https://www.patreon.com/posts/stylized-water-26014793

This image helped me with envisioning what a stylized water looks like.

https://youtu.be/KLl3PZeupFM

This video helped me with making the single layer water. I adjusted the values and the nodes accordingly so

it is more unique and original.

https://www.patreon.com/posts/stylized-water-26014793
https://youtu.be/KLl3PZeupFM

28

In-Engine Screenshots:

This is the overview of the material. The material is placed on a plane static mesh since it is a single layer

water material. The opacity spots can be seen from the white spots on the water.

As it can be seen, the edges of the objects are a bit squiggly. This is because I added the ripple effect so that

the water can cause a ripple effect on the edges of the objects.

29

When the player is inside the water layer, it can be seen that there is a circular area around the player that

makes the water clearer. It is hard to look at the circle directly but by using the image that I presented the

full image can be grasped easily.

Properties and Values

Property Description of Purpose Value

MpcCollectionIns

tance (“Location) The purpose of the

MpcCollectionInstance is to access the

Vector variable inside called “Location.” It

detects where the player is on the map and

how close the player is to the materials that

use the “Location” variable from the

MpcCollectionInstance.

The value of it is

dependent on the actor's

location.

30

Node Graph

This is the whole overview of the nodes. I will go through each annotated node group individually.

The colour of opacity spots is just a subtle grey ish colour therefore I only needed to use the 1 parameter

for it and I put 0.4 on it.

31

I used the noise node to create the texture for the opacity spots. Then I used 1-x and powered it by 2. Then

I multiply it with the colour (0.42, 0.53, 1, 0). I then added the CheapContrast material function to add the

contrast for it and add the 0.5 value to the Contrast(S) connection.

I added this to eliminate the opacity spots when relevant.

32

This Player Location Masking method is the same as the one explained in the first dynamic material. This is

done to make the opacity spots disappear when the player is present in the water making the water

clearer.

I connected the Opacity Spots to A(V3), 2 of the 0 nodes to B(V3) and C(V3) to eliminate the opacity spots

when the player is present and the Player Location Masking to the Alpha(s).

For the water movement, I used the normal texture sample called T_Water_N that is already in the engine.

Then I added TexCoord[0] to the first paneer and then I also added a second panner to the other texture

sample that I duplicated. The Speed of the Panner on the top is 0.01 X and the speed of the Panner on the

bottom is 0.01 Y. Then I connected both of the textures to a function called BlendAngleCorrectedNormals

so I can mix 2 moving normals at the same time.

For the ripple effect, I started it with DistanceToNearestSurface which means that it takes the distance to

the nearest object. Then I divide it by 100, add minus 1, and saturate it. Then I add an Add note that is

connected to a Time node that is divided by 2. Then I multiply the Add Node by 5, add a Sine, Multiply it

33

with the earlier saturated node and then add a divide by 100. Then I connected it to the add node and

added

1.033 value to it. Basically what happens is, it takes an object that is present in the water, and adds a ripple

effect around the object.

I added a colour which is (0.17, 0.22, 0.53, 0) to a multiple node with the value of 1 so I can adjust it later

on, then divide it by 100. This is for the water scatter.

These 2 values represent the values of when the water doesn’t have the water scatter.

These values are triggered when the player’s location is on the water.

34

The Original Water Scatter, the no Water scatter and the Player Location masking is then connected to the

3ColorBlen function. The Original Water Scatter is connected to A(V3), No Water Scatter is connected to

B(V3) and C(V3) and the Player Location Masking which is already discussed, is connected to Alpha(S).

This adds to the Water Murkiness. I used the colour (0.44, 0.25, 0.22, 0) and then multiplied it by 1 and

then divided it by 100.

35

Similar to the previously discussed nodes, this is to represent the water when there is no murkiness

present.

All of this is then connected to the 3ColorBlend function again with the Original Water Murkiness

connected to A(V3), No water Murkiness connected to B(V3) and C(V3) and Player Location Masking

connected to Alpha(s).

36

The connection for the main material node is pretty straightforward. The Base colour is connected to the

Opacity Spots colour parameter, the Opacity is connected to the 3ColourBlend function that is connected

to the Opacity Spots. The Normal is connected to the normal that I mentioned earlier and the refraction is

connected to the water ripple.

There is another main material node called Single Layer Water Material that I used. This is an unreal

specific node that helps me with creating stylized water with Water Scatter, Water Absorption and

ColorScale Behind Water. I decided not to use the

ColorScaleBehindWater because when I tested it with the Player Location Masking, it adds a colour to the

mask and it doesn’t make the water clear so I removed it. For the ScatteringCoefficients, it is connected to

the 3ColorBlend function that is connected to the Water Scatter and the AbsorptionCoefficients is

connected to the 3ColorBlend function that is connected to the Water Murkiness.

Dynamic Material 3 - Glowy

Overview of Effect
Basically this material is the simplest out of the other materials. This material starts off as a transparent

material and then it gives a material change based on the player’s location. It changes the emissivity with 2

37

colour layers which are orange and purple. It changes it based on the Sphere Mask that the material node

has. The impact of the material in the gameplay is it adds a variety of level design to the game. It can act as

a barrier that constrains the player from going out of their zone or as an invisible path that the player can

go through as one of the puzzles. The outer layer of the material change is a subtle purple with a bright

orange in the middle. It also has a small subtle purple circle in the middle of when the player is on the

material. This adds aesthetic and dynamic impact to the player to keep the player engaged and increase the

immersivity of the gameplay.

Effect Description

The effect is inspired by a portal that is present in video games, especially the ones with high emissivity.

With high emissivity, it allows the player to see the material change easily compared to other material

changes. There was also a youtube video that helped me in the creation of this material and I changed the

values and the colours of it so that it is original enough.

Inspiration / Reference Images:

https://www.pinterest.com.au/pin/747597606874526851/

I found this image on pinterest that resembles a portal with the difference between the inner and the outer

colour of the portal.

https://youtu.be/uReAS0eoIxM

This video helped me in the making of player location masking and the portal effect of it.

https://www.pinterest.com.au/pin/747597606874526851/
https://youtu.be/uReAS0eoIxM

38

In-Engine Screenshots:

So as it can be seen, the material doesn’t display anything when the player is not there making it

transparent. This is because of the starting point of the material’s emissivity and everything which is 0.

As it can be seen, when the player is on top of the invisible platform, it emits an emissive with 2 colour

layers that was explained before.

Properties and Values

Property Description of Purpose Value

39

MpcCollectionIns

tance (“Location)
The purpose of the

MpcCollectionInstance is to access the

Vector variable inside called “Location.” It

detects where the player is on the map and

how close the player is to the materials that

use the “Location” variable from the

MpcCollectionInstance.

The value of it is

dependent on the actor's

location.

Node Graph

This is the overall material nodes that exist. As it can be seen, it has less nodes than the other materials but

sometimes in materials, less is more.

40

From this, it can be seen I was using 2 different colours which are red (1,0,0.00632, 0) and purple

(0.28,0,1,0). The red is multiplied by 20 to add intensity and the intensity of the purple is multiplied by 2.0.

It is worth mentioning that the reason the red has more intensity is to make it look like it's more orange

than red and make the purple more subtle. The 0 parameter on the top represents 0 colour as the starting

point since it is transparent.

41

This is the Player Location Masking that has been discussed in the previous 2 materials before. This is used

to provide a mask of where the material changes which is a sphere based on the player’s location.

42

The A(V3) is connected to the 0 value from earlier since it marks the starting point. The B(V3) is connected

to the purple colour and the C(V3) is connected to the red value. The Alpha(s) is connected to the Player

Location Mask. All of this is then connected to the Emissive Color from the 3ColorBlend function. The

Opacity is also connected to the Player Location Mask so that it is only opaque when the Player’s Location

is close to the material.

Dynamic Material 4 - Ground

Overview of Effect
The effect of this material is fairly simple. It starts out as a snowy ground and then when the player gets on

top of it, it becomes transparent. The reason why I added this material is to add a variety to the level

design of the game. With this material, there are a couple of possibilities of a new level being added with

the solid to transparent material. Certain puzzles and clues for a specific puzzle can be made to adhere to

the material that could start out as an object hidden behind the objects with this material and then when

the player gets close to it, the player is able to see the object.

Effect Description
This effect is inspired by just snow in general. Snow in general is usually also linked with ice and ice is

transparent. So technically, this shows the dynamics between snow and ice and how when the player goes

close to the snow, it technically turns into ice since it became transparent. It is also inspired by snow that is

present in famous video games that will be mentioned in the screenshots sections.

Inspiration / Reference Images:

Source : Breath of the Wild

I got the snow inspiration from the game Breath of the wild. The snow in this game looks very stylized and

simple to portray the cold in the area. This inspires me to make my very own snow and implement it in my

game.

43

Source : https://youtu.be/YCHelilKhzg

This youtube tutorial helped me understand the concept of fresnel and it helped me in the process of

making the snow effect. The fresnel effect allows me to combine 2 types of textures to form an ice effect

between 2 different colours which are the white and the cyan colours.

In-Engine Screenshots:

This is the default material before the player interacts with it. It can be seen that it is very texturised with

the normals and it is a mixture between the white and the cyan colour so that it creates this snowy effect.

https://youtu.be/YCHelilKhzg

44

It can be seen that when the player is on top of the snow ground, it becomes transparent. It is hard to

showcase the whole circle around the player appearing when the player is on the ground but from the

screenshot above, the whole aspect of the material is clear enough just like the transparency effect.

Properties and Values

Property Description of Purpose Value

MpcCollectionIns

tance (“Location)
The purpose of the

MpcCollectionInstance is to access the

Vector variable inside called “Location.” It

detects where the player is on the map and

how close the player is to the materials that

use the “Location” variable from the

MpcCollectionInstance.

The value of it is

dependent on the actor's

location.

Node Graph

45

This is the overall nodes that are used to create the material. Each individual of the material nodes that are

grouped will be explained one by one.

This node is combined with the Fresnel node to make the mixing effect of the snow. The two colours

combined are the Cyan colour (0,0.92,1,0) and the white colour (1,1,1,0). Then this is connected to the lerp

node with the Fresnel alpha to mix it thoroughly.

These 2 nodes are used to create the transparent effect of when the player is close to the material.

46

This Player Location Masking is already mentioned in the materials sections before. This grouped section

basically takes the player’s location and then makes a sphere mask based on the Player’s location to the

material.

These nodes are used to create the texturised part of the material. I used 2 panners to make it move subtly

and two different normals so that it looks more texturised and I used the BlendAngleCorrectedNormals

function to blend both normals together. The Normal Map that I used is the Pebbles_029_Normal.

47

I used the 3ColorBlend function as mentioned in the materials before to create the masking effect. The

A(V3) is connected to the Fresnel Ice Effect, the B(V3) is connected to the 1 node and the C(V3) is

connected to the 0 node to create the transparent effect. Then, the Alpha(S) is connected to the player

Location Masking. Then I connected the 3ColorBlend to the Base Color and the Opacity so that it affects the

colours and the opacity of the material. Then I connected the Normal to the grouped Normal Maps nodes

that I made earlier.

Physics

Overview of Interaction
There are 3 different physics interactions that happen in the game. These are the jump mechanic, the

bouncy ball projectile, and the black hole projectile. The jump mechanic launches the player based on

where the player is looking at after a wall run. This gives the player the sense of control when jumping from

walls for better fluidity of the core mechanic. The Bouncy Ball projectile is pretty self explanatory with it

bouncing from one object to another. The Bouncy Ball projectile can be used for trickshots, puzzle solving,

and other possibilities in the game. Lastly, the Black Hole Projectile sucks all objects with physics on to it

and gives an explosion effect when it is gone. This projectile can be used for puzzle solving as well and

could also be used for moving objects with physics easily. All of these physics interactions provide the

player with more variety of mechanics that can be used while using the core mechanic to keep the player

engaged and immersed in the game.

Interaction Description

How the Interaction Works
So the first component which is the jump mechanic uses the LaunchCharacter() function. With this

function, it allows me to launch the player wherever I want it to. There are 2 versions of the jumps which

are the “Jump when Player is Wall Running.” or

48

“Regular Jmp.” The Regular Jump just Launches the Character with the

LaunchCharacter function by FVector(0, 0, 500) and sets the bXYOverride false and the bZOverride to false

as well. When the player is in the middle of wall running and the player jumps, it also launches the

character but with different values. Basically, before launching the character, I added an FVector variable

called JumpBoost which gets the ActorForwardVector of X and Y from the CameraComponent and 1.5 as

the Z value. Then on the launch character, I put JumpBoost.GetSafeNormal()*1000 as the value of the

LaunchVelocity since I want the values to be from where the player is looking at times by 1000 since the

value by itself is really small. Then for the bXYOverride and the bZOverride I set it both to false.

The bouncy ball mechanic is fairly simple. There is no value that I adjusted to adhere to

the physics component but instead I put a specific line of code called

MovementComponent->bShouldBounce = true. This basically takes the

MovementComponent function and then enables the boolean that is already inside.

This enables the projectile to bounce after hitting every object with collision enabled.

The black hole projectile is also fairly simple. I set the projectile to overlap all and I add a pulling effect. For

the pulling effect, in the tick function I used an FCollisionShape called ExposionSphere and then I made a

FCollisionShape::MakeSphere(SweepSize) with the 1000.0f sweep size. Then, I used SweepMultiByChannel

and added Impulse to the surrounding objects by -2000.0f so that it pulls the other objets to it instead

of pushing it.

Inspiration / Reference Images

Source : Mirror’s Edge Catalyst

The inspiration for the parkour and the jumping mechanic came from the game Mirror’s edge catalyst.

Mirror’s edge catalyst basically inspired the whole concept of the game in the first place since it is a first

person action adventure parkour game.

49

Source : First Person Template of Unreal Engine 5

The first person template of the engine has a bouncy ball projectile. I saw it and thought to myself that it

would fit perfectly to my game since my game will have enemies that I can trickshot with my bouncy balls.

Source : Week 6 Labs of FIT2096

For the black hole projectile, I was inspired by one of the tasks in the labs which was to make a block that

pulls all objects nearby to it. I envisioned it to be a black hole when I used it and made it in the form of a

projectile.

In-Engine Screenshots

In this screenshot, it is shown that the player used the LaunchCharacter function upwards increasing the Z

value by 500.

50

In this screenshot, it is shown that the player is getting launched based on where the player is looking at

which in this case is forward.

In this screenshot, it can be seen that the bouncy ball projectile bounced back from where I shot it, which is

the black wall in front of the player.

This screenshot shows the black hole projectile without any objects nearby. It just pushes itself until it is

destroyed after a couple of seconds.

51

This screenshot shows the black hole projectile when there are objects nearby. The objects will get pulled

and it will swirl similar to a black hole effect. This effect runs every tick until the projectile is gone.

This screenshot shows the objects when the black hole projectile is gone. The objects will be pushed away

giving an effect of explosion of the projectile.

Properties and Values

Property
Description of

Purpose

Value

JumpBoost

Acts as a variable for the

jumping mechanic of

when the player is on the

wall.

FVector

(GetActorForwardVector().X,

GetActorForwardVector().Y, 1.5f)

LaunchCharacter() The LaunchCharacter PlayerCharacter->LaunchChar

52

 is used to launch the

character whenever the

player is jumping but the

value of it depends on

whether the player is wall

running or not.

acter(JumpBoost.GetSafeNorm

al()*1000, false, false) for when the

player is wall running or

PlayerCharacter->LaunchChar

acter(FVector(0,0,500), false, false)

bShouldBounce
This boolean is a function

in the

MovementComponen

t that allows the actor to

bounce when

hitting another object in

the world.

MovementComponent->bShoul

dBounce = true

SweepSize This variable is used to

adjust the size of the

temporary hitbox around

the projectile

float SweepSize = 1000.0f

OutHits

This array variable holds

out all the hit results from

the black hole projectile.

TArray<FHitResult> OutHits =

Objects around the projectile

Location

This FVector value gets the

location of the actor which

is the black hole projectile.

FVector Location = GetActorLocation()

ExplosionSphere This FCollisionShape makes

a sphere around the actor
FCollisionShape

ExplosionSphere =

FCollisionShape::MakeSphere(S

weepSize)

SweepMultiByChannel This function performs a

collision check around the

ExplosionSphere.

if(GetWorld()->SweepMultiBych

annel(OutHits, Location,

FQuat::Identity,

ECC_WorldStatic,

ExplosionSphere))

Hit This is a variable to for(auto& Hit : OutHits)

53

loop with the array called

OutHits.

Mesh

This

UStaticMeshCompon ent

variable is there to cast

the actor that get hit by

the collision sphere into a

UStaticMeshCompon ent

UStaticMeshComponent* Mesh =

Cast<UStaticMeshComponent>

(Hit.GetActor()->GetRootcomp

onent());

AddRadialImpulse

This function is used to

add impulse to the objects

that were detected

nearby. The value of the

impulse is negative since it

pulls the object to the

actor rather than pushing

it.

Mesh->AddRadialImpulse(Loca tion,

SweepSize, -2000.0f,

ERadialImpulseFalloff::RIF_Linea r,

true)

Artificial Intelligence

Overview of AI
The main purpose of my main AI is to be a simple enemy to the player. The AI patrols through a random

location through the navmesh and looks at the player and shoots the player when the player is in their

sight. In a parkour game, making an enemy is a bit tricky since parkour games tend to not have enemies,

but by adding enemies to my game, the AI implementation itself is simple enough that it is viable for me to

put AI in the game to give the player a bit of a challenge and stakes when playing the game. The AI can also

give the player satisfaction by killing them with trickshots and possibilities that are available within the

game mechanics such as the slow down time mechanic, the bouncy ball mechanic, etc. With these

mechanics there are a number of ways for the player to kill the enemies. The AI also has a switching Gun

task to allow the AI for more variety of ways to attack the player. The AI switches guns after it runs out of

ammo of the gun that the AI is using. This can be an addition to the threat and danger of when the player is

facing the AI.

AI Description

AI Abilities
The AI uses sight stimuli as one of his abilities. So the AI is able to detect the player when the player is close

enough and is in front of the AI. The AI is also able to shoot the player when it detects the player with its

stimuli. The way the AI shoots the player is that the AI will rotate towards the player every time it sees the

54

player and it will spawn a projectile in front of it based on where the player is. The AI then will have a

cooldown for 2 seconds after shooting and then shoot again after the cooldown ends.

When it is not engaging a player, the AI generates random locations throughout the navmesh and goes into

patrol mode where the AI is going through the environment

and patrolling randomly. It uses an UNavigationSystemV1 variable called NavigationSystem that is declared

on the header file. Then it checks if the

NavigationSystem is there and an FNavLocation called ReturnLocation is made. Then, it gets a random point

in the navmesh using GetRandomPointInNavigableRadius in a radius of 2000 and puts it in the

ReturnLocation variable. Lastly, it accesses one of the Blackboard Component’s values which is the

PatrolPoint and puts the ReturnLocation variable inside the PatrolPoint variable.

The AI also switches guns everytime time the int variable GunAmmo is below or equals to 0. At the

moment, the AI only has 2 guns in total but there will be more guns to be added to the game in the future.

Inputs & Senses

AI Senses

Sense Name Property Value

Sight
SightRadius 1000

SightAge 10

LoseSightRadius SightRadius + 30

FieldOfView 100

Blackboard Values

Property Description Related Actions

SelfActor
An object variable that accesses

the actor of the

AI by itself.

Actions have not been

implemented but is planning to

be in the future

PatrolPoint
A vector variable that gives the

AI a vector to go to when

patrolling.

GenerateNewRandomLoca

tion, Patrolling

55

PlayerPosition

A vector variable that gives the

AI information of

where the player’s position is.

Rotate facing Player, Shooting

Player

ShootPlayer

A boolean that gives the Ai

information whether it should

start shooting or not.

Shooting Player

GunVariable

An int variable that determines

what kind of guns that the player

will switch into,

Switch Gun

GunAmmo
An int variable that indicates

how much ammo the enemy AI

has

left to shoot before switching the

gun.

Shooting Player, Switch

Gun

Basically, the sight stimuli of the AI acts as a trigger for the AI to start shooting at the player. The priority of

the AI shooting is higher than its patrolling because the AI immediately stops patrolling when the player is

in sight of the AI. The priority of the rotation of the enemy to the player and shooting at the player is the

same since I want the enemy AI to run both of those at the same time when the AI senses the player.

When patrolling, the blackboard variables that are used are mainly PatrolPoint. It uses a custom C++ task

called GenerateNewRandomLocationTask to provide for the vector variable of PatrolPoint. Then it rotates

to the PatrolPoint and moves to it. It also waits for 1.0s after completing the task.

The 2 other sequences are the Rotate to the player and the ShootingTask. The Rotate to the player has a

decorator which is basically telling it that it can only be activated if the ShootPlayer variable is true that is

activated when the player is within sight of the sight stimuli. Another sequence that has the same priority

as the rotate to player is the ShootingTask sequence. It starts with a Sequence with a decorator that is also

enabled when the ShootPlayer boolean is true. Then it goes to a cooldown of 2.0s after execution so that

the enemies shoot in a predicted and timely manner. Then after that, it connects to the custom C++ task

called ShootingTask.

56

The Switch Gun task is highly dependent on the GunVariable variable. The switch gun task basically checks

which gun the enemy AI has in the moment and changes it into the other gun that the enemy AI is not

using based on the GunVariable variable.

Behaviour Tree Graph

Overall the behaviour tree is fairly simple. It starts with a selector that selects the actions based on the

priority and the conditions of the decorator. Since there is only 1 sequence that has no condition decorator,

the AI will execute the patrolling sequence every time at the start. This will keep going until the AI senses

the player with its sight stimuli which makes the ShootPlayer variable to true. This then makes the player

rotate to the player every time the player is on sight and shoots at the player every 2 seconds. The reason

why I didn’t combine the rotation and the shooting in the same branch is because I want to make sure that

the AI always looks at the player even when it is not currently shooting at it. The priority of the shooting is

high and it aborts the lower priority tasks which are the moving to the generated random location task. The

reason why the priority of the shooting is high is because I want the enemy to stay in place while they are

shooting the player. This creates an effect that makes the enemy AI look like it's actually taking its time and

focusing on shooting the player rather than them moving while shooting. Then there is also the SwitchGun

task. This task is only executed based on the black board condition which is that the ammo of the gun has

to be under or equal to 0. Then after that, it triggers the switching gun task after a 4 seconds wait. The

switch gun task has the highest priority of them all. This is so that the enemy AI can focus on reloading

rather than shooting and moving because logically, when the gun is out of ammo, the enemy AI isn’t able

to shoot anything unless it reloads first.

57

Niagara Particles

Niagara Particle Effect 1 - BlackHole

Overview of Effect
This particle effect is being used for the black hole projectile. It is made to give a visual impact to the player

when the player is firing the black hole projectile. The black hole projectile particle effect resembles a very

commonly imagined shape of a black hole with an extra addition of the ring surrounding it. The black hole

has an outline of a blue shade and the black colour in the middle. The ring has a different colour which is

cyan. Even though the colour is different, it is not too different so that it complements each other. The

particle effect is also emissive to give the player a sense of impact and satisfaction when using it even when

the area of the game is dark or has low lighting. There are 4 different emitters that were used for the

BlackHole particle effect. These emitters are the BlackHole_Core, Core_Particles, Ring_Particles, and the

Swirl. The BlackHole_Core provides the black circle with the blue outline while the Core_Particles provide

the particle spread of the black circle. The Ring_Particles however provides the particle spread on the ring

of the black hole projectile particle and the Swirl provides the swirly pattern of the ring of the particle.

Effect Description
As mentioned before in the overview, the effect resembles the look of a traditional black hole whether it's

in video games and science fiction films. It is attached to the mesh component of the black hole projectile

and it despawns when the projectile is destroyed. The effect has the ring that is attached to it to give it a

sense of uniqueness and make it look more cooler. It also resembles the sphere shape since black holes

that were used as a reference tend to look like a circle.

Inspiration / Reference Images:

Source : https://www.pinterest.com.au/pin/180495897553589982/

https://www.pinterest.com.au/pin/180495897553589982/

58

This image resembles perfectly how I want my black hole projectile to look like. It has the rings around the

black circle with its outline that are very bright. The brightness aspects of it inspire the emissivity of the

particles. The only difference between this reference image and the actual particles that I implemented is

the colour of it with this being overall brown coded and my particles being blue coded.

Source : https://youtu.be/YFqRdSZEi20

This video helps me in the process of making the particles.

In-Engine Screenshots:

This is how my black hole projectile particle effect looks like. As it can be seen, it has a lot of different

components in it. The particle spread of the main core can be seen from the blue particles that are

spreading. The ring can also be seen with it being cyan.

https://youtu.be/YFqRdSZEi20

59

It can also be seen from this screenshot that the particle spread from the ring has a specific pattern in it. It

can also be seen that the swirl ring has a very texturised look due to the fact that it uses a specific material

that I made.

Properties and Values

BlackHole_Core Emitter

Property Description of Purpose Value

Life Cycle Mode

Determines whether the life cycle

(Managing looping, age, and death) of the

Emitter is calculated by the system that

owns it, or by the emitter itself.

Self

Inactive Response
Determines what happens when the emitter

itself enters an inactive state

Complete (Let Particles Finish

then Kill Emitter)

Loop Behavior
Determines what happens when the Loop

Duration is exceeded and what values are

calculated.

Infinite

Loop Duration
Establishes the duration of the emitter life

cycle.

5.0

60

Spawn Rate

Number of particles per second to spawn

90.0

Spawn Burst

Instantaneous

(Spawn Count)

Spawns a burst of particles instantaneously 1

Lifetime Mode Lifetime of the particle
Random (Min (1.4), Max

(1.75))

Color Mode The color of the particle Direct Set : R 0.0, G

41.186333, B 1000.0, A 1.0

Mass Mode The mass of the particle
Random (Min (0.75), Max

(1.25))

Mesh Scale Mode
Determine the scale of the mesh of the

particle

Uniform (0.2)

Particle State Manages Particle Age / Lifetime
Kill Particles When Lifetime Has

Elapsed (true)

Scale Mesh Size

Takes the initial mesh scale as set in the

spawn script, and scales it by a scale factor.

Sine (Normalized Angle,

Period 0.1, Scale 0.02, Bias

1.0)

Solve Forces and

Velocity Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the current

Velocity. Outputs the updated Particles.

Velocity and Particles.Position.

Active

Jitter Amount Amount of jittering of the particle 0.5

Jitter Offset Offset of the particle jittering Random Vector

Override Materials
Overrides the material with a specific

selected material

M_ShapeFresnel

61

Core_Particles Emitter

Property Description of Purpose Value

Life Cycle Mode

Determines whether the life cycle

(Managing looping, age, and death) of the

Emitter is calculated by the system that

owns it, or by the emitter itself.

Self

Inactive Response
Determines what happens when the emitter

itself enters an inactive state

Complete (Let Particles Finish

then Kill Emitter)

Loop Behavior
Determines what happens when the Loop

Duration is exceeded and what values are

calculated.

Infinite

Loop Duration
Establishes the duration of the emitter life

cycle.

5.0

Spawn Rate

Number of particles per second to spawn

50000.0

Lifetime Mode Lifetime of the particle Direct Set (1.5)

Color Mode The color of the particle
Direct Set : R 0.0, G

0.698129, B 41.186096, A 1.0

Mass Mode The mass of the particle Unset

Sprite Size Mode
Determine the size of the sprite of the

particle

Random Uniform (Min 6.0, Max

8.0)

Shape Primitive
The shape of what the particle will spawn

into

Sphere

Sphere Radius The radius of the shape primitive 20.0

62

Camera Offset

Amount Amount of the offset of the particle along the

vector between the particle and the camera

-100.0

Particle State Manages Particle Age / Lifetime
Kill Particles When Lifetime Has

Elapsed (true)

Scale Mesh Size
Takes the initial particle scale, and scales it by

a scale factor.
Uniforms Curve Sprite Scale

Scale Curve

The curve of the Uniform Curve Sprite Scale

Uniform Curve Scale

The scale of the curve uniformly 0.2

Noise Strength

Scales the sampled curl noise force vector.

300.0

Noise Frequency
Modulates the position to increase or

decrease the rate at which curl noise is

sampled

100.0

Noise Quality / Cost

Determines the quality of the noise Baked (Medium)

Pan Noise Field

Moves the sample position via Emitter Age

plus a random float generated by the

determinism flag to create a more random

feeling sample.

X 0.2, Y 0.5, Z 1.0

Drag
Applies Drag directly to particle velocity

and/or rotational velocity, irrespective of

Mass.

Float from Curve -> FloatCurve-

>Curve

Drag Curve The curve of the drag

63

Scale Curve The scale of the drag curve 1.0

Rotational Drag

Reduces each particle’s rotational velocity

1.0

Solve Forces and

Velocity Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the current

Velocity. Outputs the updated Particles.

Velocity and Particles.Position.

Active

Material The material for the particle M_Radial_Gradient

Ring_Particles Emitter

Property Description of Purpose Value

Life Cycle Mode

Determines whether the life cycle

(Managing looping, age, and death) of the

Emitter is calculated by the system that

owns it, or by the emitter itself.

Self

Inactive Response
Determines what happens when the emitter

itself enters an inactive state

Complete (Let Particles Finish

then Kill Emitter)

Loop Behavior
Determines what happens when the Loop

Duration is exceeded and what values are

calculated.

Infinite

Loop Duration
Establishes the duration of the emitter life

cycle.

5.0

Spawn Rate

Number of particles per second to spawn

50000.0

Lifetime Mode Lifetime of the particle Random (Min (0.1), Max

(1.5))

64

Color Mode The color of the particle
Direct Set : R 0.0, G 9.104832, B

10.0, A 1.0

Mass Mode The mass of the particle Unset

Sprite Size Mode
Determine the size of the sprite of the

particle

Random Uniform (Min 6.0, Max

8.0)

Shape Primitive
The shape of what the particle will spawn

into

Ring / Disc

Ring Radius The radius of the Ring primitive 60.0

Camera Offset

Amount Amount of the offset of the particle along the

vector between the particle and the camera

-100.0

Particle State Manages Particle Age / Lifetime
Kill Particles When Lifetime Has

Elapsed (true)

Scale Sprite Size
Takes the initial particle scale, and scales it by

a scale factor.
Uniforms Curve Sprite Scale

Scale Curve

The curve of the Uniform Curve Sprite Scale

Uniform Curve Scale

The scale of the curve uniformly 1.0

Noise Strength

Scales the sampled curl noise force vector.

100.0

Noise Frequency
Modulates the position to increase or

decrease the rate at which curl noise is

sampled

10.0

Noise Quality / Cost

Determines the quality of the noise Baked (Medium)

65

Pan Noise Field

Moves the sample position via Emitter Age

plus a random float generated by the

determinism flag to create a more random

feeling sample.

X 2.0, Y 3.0, Z 5.0

Drag
Applies Drag directly to particle velocity

and/or rotational velocity, irrespective of

Mass.

Float from Curve -> FloatCurve-

>Curve

Drag Curve The curve of the drag

Scale Curve The scale of the drag curve 1.0

Rotational Drag

Reduces each particle’s rotational velocity

1.0

Solve Forces and

Velocity Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the current

Velocity. Outputs the updated Particles.

Velocity and Particles.Position.

Active

Material The material for the particle M_Radial_Gradient

Swirl Emitter

Property Description of Purpose Value

Life Cycle Mode

Determines whether the life cycle

(Managing looping, age, and death) of the

Emitter is calculated by the system that

owns it, or by the emitter itself.

Self

Inactive Response
Determines what happens when the emitter

itself enters an inactive state

Complete (Let Particles Finish

then Kill Emitter)

66

Loop Behavior
Determines what happens when the Loop

Duration is exceeded and what values are

calculated.

Infinite

Loop Duration
Establishes the duration of the emitter life

cycle.

5.0

Spawn Burst

Instantaneous

(Spawn Count)

Spawns a burst of particles instantaneously 1

Apply Force to

Velocity
Converts the Physics Force value generated

by force modules and applies it to Particle

Velocity.

true

Apply Rotational

Force to

Rotational

Velocity

Converts the Physics

RotationalForce value generated by

rotational force modules and

applies it to PArticle RotationalVelocity.

true

Lifetime Mode Lifetime of the particle Direct Set (1.5)

Color Mode The color of the particle
Random

Hue/Saturation/Value : R

0.0, G 41.186333, B 1000.0, A

1.0

Alpha Scale Range The random range of the color’s alpha

X 0.8 Y 1.0

Mass Mode The mass of the particle Unset

Sprite Size Mode
Determine the size of the sprite of the

particle

Uniform (120.0)

Mesh Orientation

Relative Sprite

Facing Vector

Adjust the orientation of the particle of the

Sprite relative to the mesh

X 0.0, Y 0.0, Z 1.0

67

Mesh Orientation

Relative Sprite

Facing Vector

Adjust the orientation of the particle of the

Sprite relative to the mesh

X 0.0, Y 1..0, Z 0.0

Solve Forces and

Velocity Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the current

Velocity. Outputs the updated Particles.

Velocity and Particles.Position.

Active

Dynamic Material

Parameters

Control the strength, pan and the x and y of

the swirl

Swirl 0.001, Pan 2.0, X 1.0, Y

1.0

Niagara System / Emitters Breakdown

This is the overview of the emitters. There are a total of 4 emitters and it will be explained one by one.

68

BlackHole_ Core

This emitter emits the core part of the black hole projectile. It uses the

sphere fresnel material that I made and turns it into a black hole core. It

has a dark colour in the middle with bright blue outlines. In this emitter I

basically put it so that it emits in a specific spot and then added jitter into

it so that it appears as a couple of spheres overlapping each other. This

creates a cool effect of a black hole core.

Core_Particles

This emitter is responsible for the particle spread of the black hole core. This

emitter takes the shape of the sphere as seen from the Shape Location node

and then creates a spread of particles. This particle also has the Curl Noise

Force and the Drag node to add into the unpredictability of the particle itself

on where it is going.

69

Ring_Particles

The ring particles emitter is responsible for the ring outline of the swirl

effect of the black hole projectile. It has similar properties as the

Core_Particle emitter but the difference is the shape on where it is being

emitted which is the Ring / Disc shape.

This swirl emitter creates the swirl effect of the ring in the black hole

particle. This has the Align Sprite to Mesh Orientation node to align the

sprite itself to the other particle mesh. This also has Dynamic Material

Parameters so that the material that is stored in this particle can be

controlled dynamically in the outlier of the particle.

Niagara Particle Effect 2 - RockTrail

Overview of Effect
Basically, this effect is present to showcase the trail behind a character. Originally I wanted to add this rock

trail to the player character but since the player is in first person, it is hard to tell that the effect is present.

Therefore, I put this effect on the enemies. The impact of this effect is to provide more sense of dread and

danger to the enemies. The rock trail adds a sense of power to the enemies since having a trail that is as

rugged as the rock trail makes the enemy look more powerful when they are walking and turning. The

effect itself is made with the SM_Rock mesh that is already available in the engine.

70

The effect only has 2 emitters. The first emitter is the Main_Rock_Trail which makes the big rocks appear

when the enemies are walking. Another emitter is the

Small_Rock_Pieces which shows the debris of the rocks that are going everywhere when the enemies are

walking or turning around. These emitters combined creates the perfect rock trail for the enemies. Even

though it only has 2 emitters in contrast with the black hole particles that have 4 emitters, it still creates a

very cool rock trail effect that is perfect for the concept that I imagined.

Effect Description

The effect itself has 2 main parts as mentioned before in the overview. It has big rocks and small rocks. The

big rocks spawned in a random rotation and it spawned behind the enemy character. It also spawned in the

height of where the ground is so it looks like it spawned from the ground. The small rocks spawned on the

top part of the particles. It has a wider spread and looks like debris that was spreading everywhere when

the rocks spawned.

Inspiration / Reference Images:

Source : Avatar the Last Airbender (TV Show)

The first thing that I reference this particle from is the TV show “Avatar the last airbender.” In the TV show,

there are people that can control rocks and things which are called the EarthBenders. I based my particle

highly out of these EarthBenders techniques especially when they bring out rocks from the ground. It is

worth noting that I referenced it heavily from the TV show not the live action movie since the movie didn’t

portray any powerful feats of the earthbenders and it took them like 7 earthbenders to move 1 single rock.

Source : https://youtu.be/a2vyMVQmx3E

https://youtu.be/a2vyMVQmx3E

71

This youtube video helped me in the process of making the rocks trail for my video game. I adjusted the

values of the trail so that it matches the aesthetic and the visual aspect of it that I wanted.

In-Engine Screenshots:

This is the particle in action. It can be seen that there are the big rocks and the small rocks spawning. It can

also be seen that it disappears after a couple of seconds the enemy AI moves since there is a specific

lifetime of the particle effect. I also grabbed this screenshot when in play mode because in the niagara

particle itself, it appears as nothing since there are no movements on the preview. This means the particle

only appears when the object that it is attached to is moving.

Properties and Values

Main_Rock_Trail Emitter

Property Description of Purpose Value

Life Cycle Mode

Determines whether the life cycle

(Managing looping, age, and death) of the

Emitter is calculated by the system that

owns it, or by the emitter itself.

Self

Inactive Response
Determines what happens when the emitter

itself enters an inactive state

Complete (Let Particles Finish

then Kill Emitter)

Loop Behavior
Determines what happens when the Loop

Duration is exceeded and what values are

calculated.

Infinite

Loop Duration
Establishes the duration of the emitter life

cycle.

2.0

Spawn Spacing
Spacing between spawned particles in units

(cm)

20.0

72

Max Movement

Threshold
If the emitter speed is greater than this value

in a single frame, stop spawning particles

on that frame

5000.0

Movement

Tolerance If the amount of movement on a given frame

is below this threshold, don’t spawn any

particles. Prevents small emitter movements

from spawning particles.

1.0

Lifetime Mode Lifetime of the particle Random (Min (0.9), Max

(1.0))

Color Mode The color of the particle
Direct Set : R 1.0, G 1.0, B 1.0, A

1.0

Mass Mode The mass of the particle Random (Min (0.75), Max

 (1.25))

Mesh Scale Mode Determine the scale of the mesh of the

particle
Random Non-Uniform (Min

(0.2, 0.2, 0.4), Max (0.3, 0.3,

0.5))

Shape Primitive
The shape of what the particle will spawn

into

Cylinder

Cylinder Height The height of the cylinder primitive 0.0

Cylinder Radius The radius of the cylinder primitive 100.0

Cylinder Height

Midpoint The Cylinder height midpoint. 0 is the

bottom of the cylinder, 0.5 is the middle, 1 is

the top.

0.5

Initial Mesh

Orientation Align a mesh to a vector or rotate it into a

place using the rotation vector.

Rotation Random Range

Vector

73

Rotation random

Range Vector Rotates the orientation quat on any axis. A

value of 1 represents a full rotation on a

given axis.

Minimum (0.0, 0.0, -1.0),

Maximum (0.0, 0.0, 1.0)

Rotation

Coordinate

Space

Defines the originating space of the vector

before being transformed into the

destination space

Mesh

Meshes
Inserts the mesh that the particle will

appear as

SM_Rock

Small-Rock_Pieces Emitter

Property Description of Purpose

Value

Life Cycle Mode

Determines whether the life cycle

(Managing looping, age, and death) of the

Emitter is calculated by the system that

owns it, or by the emitter itself.

Self

Inactive Response
Determines what happens when the emitter

itself enters an inactive state

Complete (Let Particles Finish

then Kill Emitter)

Loop Behavior
Determines what happens when the Loop

Duration is exceeded and what values are

calculated.

Infinite

Loop Duration
Establishes the duration of the emitter life

cycle.

2.0

Spawn Spacing
Spacing between spawned particles in units

(cm)

10.0

Max Movement

Threshold
If the emitter speed is greater than this value

in a single frame, stop spawning particles

on that frame

5000.0

74

Movement

Tolerance
If the amount of movement on a given

frame is below this threshold, don’t spawn

any particles. Prevents small emitter

movements from spawning particles.

1.0

Lifetime Mode Lifetime of the particle
Random (Min (0.9), Max

(2.0))

Color Mode The color of the particle
Direct Set : R 1.0, G 1.0, B 1.0, A

1.0

Mass Mode The mass of the particle Random (Min (0.75), Max

(1.25))

Mesh Scale Mode Determine the scale of the mesh of the

particle
Random Non-Uniform (Min

(0.025, 0.025, 0.025), Max

(0.1, 0.1, 0.1))

Shape Primitive
The shape of what the particle will spawn

into

Cylinder

Cylinder Height The height of the cylinder primitive 0.0

Cylinder Radius The radius of the cylinder primitive 100.0

Cylinder Height

Midpoint The Cylinder height midpoint. 0 is the

bottom of the cylinder, 0.5 is the middle, 1 is

the top.

0.5

Initial Mesh

Orientation Align a mesh to a vector or rotate it into a

place using the rotation vector.

Rotation Random Range

Vector

Velocity Mode
The added velocity mode to the

particle

In Cone

75

Velocity Speed
The added speed of the velocity of the

particle

Random range Float (Min 100.0,

Max 400.0)

Cone Axis Axis of the Cone Velocity Mode 1.0, 0.0, 1.0

Cone Angle Angle of the Cone Velocity Mode 45.0

Inherit Velocity

Amount Scale

A scale factor on the amount of velocity to

inherit.

Vector From Float (0.5,

Inherit Velocity Speed Limit

100.0)

Apply Force to

Velocity
Converts the Physics Force value generated

by force modules and applies it to Particle

Velocity.

true

Apply Rotational

Force to

Rotational

Velocity

Converts the Physics

RotationalForce value generated by

rotational force modules and

applies it to Particle RotationalVelocity.

true

Particle State Manages Particle Age / Lifetime
Kill Particles When Lifetime Has

Elapsed (true)

Orientation

Method Choose from a selection of options for

updating the orientation of mesh particles,

including a simple rotation rate, orienting

directly to a vector or position in space,

flight behavior

Rotation Rate

such as banking and turn rate, and a simple

automatic roll behavior based on the radius

of a particle and how fast it is moving.

76

Rotation Vector Rotation per axis in the coordinate space of

choosing

Random Range Vector

(Minimum (-1.0, -1.0, -1.0),

Maximum (1.0, 1.0, 1.0),

Evaluation Type : Spawn

Only)

Rotation Rate Scale factor on Delta Time for global speedup

(or bypassing) of rotation. Random Range Float

(Minimum -0.5, Maximum 0.5,

Evaluation Type : Spawn Only)

Scale Mesh Size

Takes the initial mesh scale as set in the

spawn script, and scales it by a scale factor

Vector From Float->Float from

curve->Curve for Floats

Scale Mesh Size Curve

The curve for Scale Mesh Size

Scale Curve

The scale of the curve of the Scale Mesh Size

1.0

Drag
Applies Drag directly to particle velocity

and/or rotational velocity, irrespective of

Mass.

0.5

Rotational Drag

Reduces each particle’s rotational velocity

5.0

Collision Enabled
Enable or disable the module’s affect on the

effect

enabled

Radius

Calculation Type
Each particle’s collision radius will be

calculated for you, per frame , using the

methods laid out below.

Sprite

Method for

Calculating

Particles Radius

This enum changes the way that each

particle’s collision radius is calculated.

Bounds

77

Particle Radius Scale
This value scales the calculated particle

collision radius

1.0

Restitution

This controls the particle’s bounce

coefficient. 1 will retain all of the particle’s

energy along the impact normal vector and 0

will remove it.

Random Range Float (Min

0.0, Max 0.3)

Simple Friction

If true, fewer parameters will be used to

control the friction coefficient.

true

Friction
The friction coefficient defines how quickly a

particle will slow down as it slides across a

surface

0.25

Enable Rest State

This will pause particles that penetrate

surfaces more often than the specified rate

and particles that have penetrated a surface

more deeply than allowed.

true

Maximum

Penetration

Correction

This number specifies the maximum number

of units that a particle can be pulled out of

another surface before being

instantaneously forced into a rest state

0.5

Percentage of

Penetration

Before

Particles will enter a rest state if they are

found to penetrate surfaces more often than

this float allows over the “Rest State Time

Range”

1.0

Rest State Time

Range

This is the amount of time that a

particle’s interpenetrations will be

0.5

tracked over when determining if it should

enter a rest state.

78

Solve Forces and

Velocity Takes the values accumulated into

Transient.PhysicsForce, Multiplies by

Engine.DeltaTime and adds to the current

Velocity. Outputs the updated Particles.

Velocity and Particles.Position.

Active

Meshes

The mesh this particle will take shape as

SM_Rock

Niagara System / Emitters Breakdown

This is the overview of the emitters. Unlike the black hole particle, this particle effect only has 2 emitters

but the complexity of it is quite complex. Again, each emitter will be explained and broken down one by

one.

79

Main_Rock_Trail

This emitter is fairly simple. How it basically works is that it spawns on

a cylinder shape and then it spawns whenever it moves. The way for it

to spawn whenever it moves is through the Spawn Per Unit node. Then

I adjusted the values accordingly to create the optimal effect in the

end.

Small_Rock_Pieces

This emitter is the complicated one out of the two emitters. This

emitter basically portrays the rock pieces that fly out when the

enemies spawns the rock trail. The way I do this is I duplicated the

previous emitter and then I added a couple of nodes into it. The

Add Velocity, Inherit Velocity, and the Apply Initial Forces nodes are

responsible for the offset force of the particle when the particle is

spawned. The particle also has Drag to help offset itself and Collision

to give the collision effect whenever it collides with an object.

Sequencing / Cinematic

Overview of Sequence
Basically the cinematic that I have in my game portrays the whole

level design overview of the game. The cinematic takes place at

the start of the game after the player presses start on the main

menu. There is a bit of a distance from the camera to the level

to give the player a clear view of the levels. The reason why I chose

to do this cinematic is because a parkour game tends to be tricky for

the player if the player doesn't know where to go or what the level looks like. By giving the player a preview

of the level, it can increase the motivation of the player to finish the level and it will make the game more

immersive.

80

There is also a custom event that happens on the cinematic which is the enemy AI shooting when the

cinematic is playing. This is to give a preview of what the Enemy is capable of and give the player a sense of

danger and caution when approaching the level where the enemy AI is present. Even though this increases

the predictability of the level, it also decreases the stress of the unknown of the player because sometimes

in games, especially parkour games, it is better to provide the player with clear expectations of the level

rather than relying on the element of the unknown.

Camera Angles / Properties
There are several keyframes that I made in order for the cinematic to work. These are the keyframes that

are in the sequence with the description of it :

This is the first camera angle of the cutscene. The reason why I put it here is because it provides a great

overview of the first part of the starting level of where the player is.

81

This is the 2nd angle of the camera. This is in a slightly different position than the last angle but it is rotated

to another area. The reason why I chose this angle is because it is a good overview of another section of

the level and while the camera is rotating it also showcases the first wall running level.

This camera angle is chosen because it showcases the next section of the level which is the invisible ground

section. It also shows the hint of the level (The shape under the ground level) and the level itself.

82

This camera angle provides a clearer view of the invisible ground level overall since it shows the start and

the end of the invisible ground level.

This camera angle shows the end of the invisible ground level and shows the next part of the level which is

the AI enemy levels.

83

This is the first part of the AI Enemy level and it is located up close to the enemy AI. The enemy AI will also

move while the cutscene is running, showing the patrolling nature of the AI.

This camera angle is similar with the previous one but it is in a slightly different location but on the same

level ground of the enemy AI level.

84

This keyframe shows the transition between the first part of the enemy AI level to the next enemy AI level

but through another wall run level which is a sub level.

The wall run part of this level is quite long so the key frame to showcase how long the wall run part is

needed.

85

This keyframe showcases the next Enemy AI level which I call the “Enemy on Water.” This shows the first

part of the Enemy On Water level.

This keyframe showcases the whole Enemy On Water level which is separated into two parts.

86

This keyframe shows the Enemy On Water level as well but with more depth into it. It shows the enemies

with a more up close angle.

This keyframe shows the start of the level again since after the cutscene ends, it goes back to the start of

the level.

87

This keyframe zooms in to the spot of where the player is since the end goal of the cutscene is to go to

where the player is facing and then transitions into it.

To avoid gimbal lock, this keyframe is needed before rotating the camera into where the player’s starting

point is facing.

88

This is the continuation of the previous keyframe and it is done to avoid gimbal lock.

This keyframe marks the start of the camera rotation to where the player is facing on the starting position.

89

This keyframe is the last keyframe of the cutscene. It captures where the player is facing when the player

will start playing and it will transition to where the player can take control of the character.

Scripted Events
There is only one specific scripted event that happens during the cutscene. That scripted is the enemies

shooting. The reason why I chose this scripted event is as mentioned before in the overview, it is to show

the player what the enemy AI is capable of and to add that sense of danger and preparation to the player.

This allows the player to prepare mentally or mechanically to face the challenge of the enemy AI before

actually playing the game. I call the event through the game mode class of the game because there are 2

main ways to call scripted events that are through the game mode or a character class since it is called

through blueprints.

Basically when the events are called, all the enemy character actors in the game will shoot a projectile in a

specific direction. This happens when the cutscene shows the enemy AI and only happens in those

instances. The function that was called is present in the EnemyAIController class since it is part of the AI

mechanic called ShootPlayer.

There are specific values used in the ShootPlayer function. First it takes an

EnemyProjectileClass value which is declared as a TSubClassOf<AEnemyProjectile>. After that it gets the

Pawn of the character. Then, it declared an ACharacter variable named PlayerCharacter which gets the

player character from the world. Then it goes to the if statement to make sure the PlayerCharacter is not

null then gets the CurrentLocation of the enemy AI. Then it also gets the ShootingDisplacement of the

spawning of the projectile. After that, it gets the PLayerLocation of the player and the DirectionToPlayer.

This is done to get the distance from the enemy AI to the player.

90

After that, it gets the rotation of the DirectionToPlayer to make sure the rotation is correct. Then it rotates

the ShootingDisplacement Vector and then gets the

SpawnLocation of the projectile. Lastly, it calls a variable called SpawnedProjectile with an

AEnemyProjectile* variable prefix and then cast it into AEnemyProjectile and Spawn the actor into the

world on the SpawnLocation based on the previous location and rotation initialization. Then, the

EnemyProjectile has a separate code which contains a simple projectile code to push the projectile

forwards.

Storyboard

This is the drawing of the starting frame. This shows the start of the level which is indicated by the square.

It also shows part of the next wall run part of the level.

91

This is the wall run part of the level. The line shows the wall that exists in the next section of the level.

This is the next section of the level. This drawing shows the transition of the player going up the wall to get

to the level located on the top part of the level.

92

This part of the level shows another part of the level which is the boxes level. The box's level is the one

where the player can test out the gravity gun.

This part of the cutscene is the one where it showcases the transparent floor level part of the game.

93

This is the part of the cutscene where it is approaching the enemy AI level. The stars symbolise the enemy

AI.

94

This is the close up shot of the cutscene where it showcases the enemy AI.

This part of the cutscene shows the next wall run part of the level.

95

This part of the cinematic showcases the level on which it shows the enemies on the water level.

96

This keyframe part of the sequence shows the beginning of the level again but in a more close up manner.

97

This shows the fps preview of the player when the player is starting. It also marks the end of the cinematic.

MetaSound

Overview of Sound Effect
So the sound effect that I have in the meta sounds is the combination of three different sound effects. The

three sound effects are the jumping sound effect, the wall run sound effect, and the shoot sound effect. It

switches the sounds based on what happened with the player. When the player jumps, the sound will

trigger once that will indicate that the user is jumping. The shoot sound effect also triggers once after the

player shoots once. The wall run sounds a bit different. It repeats until the player ends the wall run. These

sounds are implemented because it adds impact to the player when the player is playing the game. Sounds

are one of the most important aspects of the game since it adds the immersivity to the game and by adding

these sounds to the game, it makes the game feel more complete.

When the player does the things that the sound is implemented in which are the wall run, shoot, and the

jump action, the player will feel more immersed when doing those actions and it will make the actions

more obvious in terms of using it. The nodes of the meta sound use several triggers to trigger the sound

differently based on which actions the player is doing.

Effect Description
Basically the sound effects that I implemented are three different sound effects combined into one meta

sound. This is to make for easier development. As mentioned before in the overview, the sounds are the

98

Jump sound effect, the shoot sound effect, and the wall run sound effect. The wall run sound effect uses

the

VR_Object_Grabbed_Loop sound from the engine since it sounds futuristic and it fits the Wall Run

mechanic. The Jump sound effect uses the VR_Grab sound effect from the engine because it sounds like a

player jumping off a plank which is what I am aiming for. Lastly, the shooting sound effect uses the

FirstPersonTemplateWeaponFire02 which is just basically the shooting sound from the first person

template which is perfect for my shooting sounds.

Inspiration / Reference:
I cannot provide my inspiration with screenshots since it is impossible to provide the inspiration of sounds

through screenshots but I will describe my overall thought process of thinking about these sounds.

So when I started gathering the idea for the sound, an idea came up to me in the form of “What if I could

trigger three different sounds in just one sequence.” This idea then made me think of what kind of sound

effects I would want to implement then I thought why not just include every aspect of my game that is

connected to my player. Then I decided that since the player can wall run, jump, move and shoot I would

want to complete the main mechanics that the player has sound wise. I didn’t have to do the move sounds

since it is already covered in the labs but I decided to do the rest.

Properties and Values

Property Description of Purpose Value

Attenuation

(Jumping)
Value used to represent sound drop off over

a distance. This sound is going to be placed

on the bottom side of the player’s body.

500.0f

Attenuation (Wall

Run)
Value used to represent sound drop off over

a distance. This sound is going to be placed

on the side part of the player’s body

depending on which side the wall is.

500.0f

Attenuation

(Shooting)
Value used to represent sound drop off over

a distance. This sound is going to be placed

on the middle side of the player’s body.

500.0f

99

MetaSound Diagram

This is the overall node graph of the metasound. Since there are different sounds that will play depending

on the action of the player there are different inputs present. The most obvious ones are the On Play input

which plays the audio and the On Stop input which stops the sound. There are other inputs which are the

On Shoot input which triggers when the player shoots, the On Jump input which triggers when the player

jumps and the SoundPlayed Input which decides which sound is going to be played based on the sound

array. The VariedSounds array has 3 different sounds. In the 0 index the sound is the sound for the wall run

action, the 1 index is the sound for the jump action and the 2 index is the sound for the shoot action. The

SoundPlayed input is changed dynamically through code based on the player’s action. This then is

connected to the Get(WaveAsset:Array) node which is then connected to the Wave Asset part of the Wave

Player (Mono) node. The Trigger Repeat node is for the wall run audio since when wall running, the audio

should keep repeating over and over until the player stops or finishes wall running. The period of it is 0.42

since it is a good period repeat of the wall run audio. The On Shoot and the On Jump input is connected to

the Trigger Any (3) node which connects to the Play node. This allows the play node to be triggered in 3

different ways rather than 1. The Wave Player (Mono) plays the sound based on the Wave Asset that was

selected. The reason why there is an On Stop trigger on the Stop part of the Wave Player is because the

Wall Run audio doesn’t stop immediately and has a delay on when it stops so using this On Stop input

trigger on it stops it immediately. Then, when the Wave Player is finished it goes to the Trigger Once node

to mark the meta sound as finished.

