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Model 

Genotypes 

Relevant Features 

The primary feature that is considered is the sequence of actions that Mario can take. The only 

allowed actions that Mario can take are RightRun and RighRunJump. These action sequences 

are crucial since they directly influence Mario’s behavior and performance in the game. 

Encoding of Features 

The way the action sequences are encoded is by putting it in an array of strings, with each 

string representing a specific action that Mario can perform. For example, “RightRunJump” 

represents Mario running to the right while jumping. This encoding allows for easy manipulation 

and comparison of different action sequences. Each population is also represented by a class 

called MarioDNA which have : 

- A list of action strings (marioGenes) 

- A MarioForwardModel class that captures the state of the game after executing the 

action sequence. 

- A fitness score that defines the effectiveness of the action sequence. 

Phenotypes 

Instantiation of Genotype 

The genotype (action sequence) is instantiated as a ‘MarioDNA’ object, which includes the 

action sequence and a clone of the game model. This instantiation allows the genotype to be 

evaluated in the game environment. 

Parameter Justification 

- Sequence Length (20) : This length balances the need for a diverse set of actions with 

computational efficiency. Ideally, this length can be more but due to the limitation of 

computation, it is limited to 20. 

- Action Choices : Limited to ‘RightRun’ and ‘RightRunJump’ for simplicity and to focus on 

basic yet effective actions. This decision also allows for efficient computational workload. 

It is also worth mentioning that all levels that are presented for this assignment are able 

to be solved with just 2 of these inputs but the only problem is that it highly depends on 

the amount of population, generations, and the length of the sequence of actions. 

Here is the pseudocode that initializes the genotypes based on the parameter provided : 



ArrayList initialMarioGenes; 

For (sequenceLength) { 

Add random allowed action to initialMarioGenes; return 

initialMarioGenes; 

This code is used at the start of the agent where the agent will define a random set of actions in 

the sequence of actions (RightRun or RightRunJump) and put it in the array. This then will be 

initialized in the initialMarioGenes variable. 

Reproduction 

There are 2 main reproduction methods that I used which are Crossover and Mutation. 

Crossover 

Crossover combines genes from two parents to create offspring. Two crossover points are 

chosen randomly, and genes are exchanged between these points. Here is the pseudo code of 

the crossover method : 

ArrayList childGenes; 

Int point1 = getRandomPoint; 

Int point2 = getRandomPoint; 

Int start = get lowest point; 

Int end = get highest point; 

For (i = 0; i < start) { 

childGenes.add(get parent1’s genes) 

} 

For (i = start; i < end) { 

childGenes.add(get parent2’s genes) 

} 

For (int i = end; i < parent’s gene size) { 

childGenes.add(get parent1’s genes) 

} 

Return MarioDNA(marioforwardmodel, childGenes); 



Basically, it takes the parent1 and parent2 parameters. Then, a random point is defined from the 

variables. After that, it gets the highest and the lowest point for the bound of the crossover. 

Then, it adds the genes based on the crossover that was defined. 

Mutation 

Mutation randomly alters the genes in the offspring with a small probability, introducing new 

variations into the population. This is done to avoid local optima for the evolutionary algorithm 

so that it can still get the best solution even if it is stuck in one specific spot or problem. Here is 

the pseudocode for the mutation method : 

If (random num < mutationRate) { 

For (gene size) { 

Set each gene to a random action (RightRun / RightRunJump) 

} 

} 

The genes are mutated if the random number that is defined is lower than the mutation rate. If it 

is lower than the mutation rate, it mutates all of the genes of that specific individual in the 

population. 

Parent Selection 

Selection Criteria 

The selection criteria for both parents are completely random. This is to add more varied results 

for the children instead of just using the top result. Since the action sequences are only limited 

to 2 action sequences, this method is highly viable. From the random parents, it can make a 

variety of childrens making it easier for Mario to find the optimal child out of all the variance of 

data. Here is the pseudocode of the parent selection : 

For (maxPopulation after elitism) { 

parent 1 = getRandom; Parent 2 

= getRandom; 

This code may seem unfinished but it is only the first part of the code. The next part will be the 

offspring and the mutation part of the code which will be discussed in the next header. 

Reproduction Frequency 

Each selected pair of parents reproduces to generate one offspring. This keeps repeating until it 

replenishes the max population. This is because the parents are quite randomized and 1 

offspring is enough for a variance of data for each pair. Since the parents are randomized each 



time, the data that will be outputted will also be more randomized rather than using the same 

parent for more than one offspring. Here is the pseudocode for the offspring section (cont. Of 

Selection Criteria) : 

offspring = crossover; 

mutate(offspring); 

newPopulation.add(offspring); 

} 

Replacement Rule 

Selection for Next Generation 

The individuals that are selected for the next generation will be the best performing individuals. 

Since Elitism is incorporated, it depends on the total amount of elitism, for example, if 

elitismCount is 3, that means 3 of the best individuals will be part of the next generation. The 

rest of the generation will be from the offspring that was made from the parents through 

crossover and mutations. Here is the pseudocode to incorporate elitism : 

For (elitismCount) { 

newPopulation.add(population.get(i)); 

} 

The for loop for reproduction i starts from elitismCount; 

Impact on Diversity 

The impact of this method on diversity is the exploitation, exploration, and population diversity. 

The exploitation means that by retaining the top-performing individuals, the algorithm ensures 

that the best solutions are preserved and refined, promoting the exploitation of known good 

solutions. Exploration meaning that crossover and mutation introduces new genetic 

combinations and variations, promoting exploration of the fitness landscape to discover 

potentially better solutions. The last thing, population diversity meaning that elitism can help 

maintain high-quality solutions, but excessive elitism can reduce diversity. The crossover and 

mutation steps help mitigate this by introducing variability, ensuring that the population doesn’t 

converge too quickly on suboptimal solutions and continues to explore a wider range of 

potential solutions. The randomness of the parent selection also impacts the diversity of the 

results. 



Fitness Function 

Evaluation Metrics 

There are a couple of evaluation metrics to define the fitness function. Here are all of the 

evaluation metrics : 

- Mario’s Vertical Position (Y- Coordinate) : This helps to determine how high Mario is. The 

higher mario is, the better fitness mario will achieve due to the nature of the levels. 

- Completion Percentage : This helps determine the progress through the level. -

 Remaining Time : This encourages faster completion of the level. 

- Game Status : Rewards the player on winning and penalizes losing or running out of 

time. 

- Mario’s Surroundings on the Y-Coordinate 

Fitness Calculation 

Here is the pseudocode for the fitness calculation : 

Double fitnessNum; 

Float marioY = getMario’s Y position; 

If (marioY < 1) { 

fitnessNum += 10000; 

} 

If (marioY > 1) { fitnessNum -= 

marioY * 100; 

} 

If (marioY > 140) { fitnessNum 

-= 100000000; 

} 

For (Below mario) { 

If (below mario is a brick) { 

fitnessNum += 10000; 

bDownBrick = true; 

break; 

} 

} 



If (bDownBrick) { 

bDownBrick = false; 

For (above mario) { 

If (above mario is a brick) { 

fitnessNum -= 20000; 

Break; 

} 

} 

} 

fitnessNum += CompletionPercentage * 100000; 

fitnessNum += getRemainingTime; 

If (win) { 

fitnessNum += 9999999999; 

} else if (lose or timeout) { 

fitnessNum -= 9999999999; 

} 

Return fitnessNum 

The fitness function starts by putting mario Y’s position into a variable. Then, I noticed some 

levels have a specific spot in the top that Mario can just walk on so that Mario can skip over the 

level. Therefore, I added an implementation that rewards mario if mario is above the screen 

making mario always jump on the top whenever mario’s starting position is at the top. It also 

checks if mario is below the bottom platform and if mario is below the bottom platform, its the 

same as calling mario dead. The next part is checking if there is a brick below mario. If there is 

a brick, mario will be rewarded since mario will land on the brick if mario is in the air. If not, then 

Mario will not get any reward. 

The next part is the 2nd part of the check. If there is a brick below mario but there is a brick 

above mario, that means mario could’ve jumped on the brick above him which means mario will 

be penalized. Then, the completion percentage is also checked with a very high number so that 

Mario prioritizes completing the level. The remaining time is also checked to ensure that Mario 

finishes the level as fast as possible. The last check that the fitness function goes through is 

whether Mario wins or loses. If mario wins, mario gets rewarded heavily since that is the main 

objective of the game but if mario loses, mario gets penalized heavily since I don’t want Mario to 

lose the level. 



Training Approach 

Initial Population 

Generation Method 

The initial population is generated randomly. Each individual in the population (an instance of 

‘MarioDNA’) is initialized with a random sequence of actions (‘marioGenes’). This sequence is of 

a fixed length, defined by the parameter ‘sequenceLength.’ 

Number of Organisms 

The number of organisms in the initial population is determined by the parameter 

‘maxPopulation’, which is set to 30 in this implementation. 

Here is the pseudocode of the initialize function : 

For (maxPopulation) { 

MarioDNA marioDna = new MarioDNA(clonedModel, 

initialiseMarioGenes()); population.add(marioDna); 

} 

Basically, it takes in the variable maxPopulation and then runs a for loop based on how many 

max population it is. Then, it makes an individual using the MarioDNA class and adds it into the 

population. 

Parameter Selection 

Population Size 

Value : maxPopulation = 30 

A population size of 30 is a balanced choice that allows for sufficient genetic diversity while 

keeping the computational load manageable. This size helps to explore the solution space 

adequately without overwhelming the system with too many simulations. This might seem small 

but due to the nature of the action sequence method, it is crucial for it to not be too much. 

Ideally, more population would be beneficial but if the game runs too slow, it could affect the 

performance of the agent as well. The impact of having more population size wouldn’t be worth 

the performance compromise. 

Sequence Length 

Value : sequenceLength = 20 



A sequence length of 20 provides a good balance between having enough actions to complete 

meaningful tasks and maintaining the ability to evaluate and evolve individuals efficiently. This 

length ensures that the agent can perform a variety of actions while keeping the complexity of 

evaluation reasonable. Ideally, more sequence length would be beneficial but if the game runs 

too slow, it could affect the performance of the agent as well. The impact of having more 

sequence length might be worth the performance compromise but to a certain extent and after 

trial and error, the number 20 is a good base number for the sequence length. 

Number of Generations 

Value : ‘generations = 30’ 

Training over 30 generations provides enough iterations for the evolutionary algorithm to 

improve the population significantly. This number is chosen to balance between achieving 

convergence and maintaining reasonable training time. The impact of having more generations 

wouldn’t be worth the performance compromise and 30 is already a good number to base upon. 

Mutation Rate 

Value : ‘mutationRate = 0.05’ 

A mutation rate of 5% is low enough to maintain the integrity of high-performing individuals but 

high enough to introduce new genetic material into the population. This rate ensures that the 

algorithm can explore new solutions while refining existing ones. Since I want the algorithm to 

be predictable but the minority of the population would have a chance to escape potential local 

optima, 5% is a good rate of mutation to implement. 

Elitism Count 

Value : ‘elitismCount = 3’ 

Retaining the top 3 individuals in each generation ensures that the best solutions are preserved 

and passed on to the next generation. This helps in maintaining the quality of the population and 

speeds up convergence. 3 is also a good number since the total number of the population is 30 

meaning that 10% of the new population are the individuals that was brought upon from the 

previous population through elitism. 

Crossover Points 

Value: Random crossover points within the sequence length. 

Using random crossover points introduces variability in the offspring, promoting genetic 

diversity. This strategy helps in exploring the solution space more effectively. 



Termination Criteria 

The algorithm is set to run for a fixed number of generations, which is 30 in this case. This 

choice is made to ensure that the agent has sufficient time to evolve and improve while keeping 

the training process within practical time limits.By observing the performance of the best 

individual in each generation, one can assess whether the population is converging towards an 

optimal solution. 

If the performance stabilizes or shows diminishing returns, it indicates that the population has 

potentially reached a local or global optimum. Running for a fixed number of generations 

ensures that the training process does not run indefinitely, making it feasible to complete within 

available computational resources and time constraints. If the algorithm reaches local or global 

optimum, the agent will still be the best performing fitness individual but it will meet its demise / 

will not progress. 

Evaluation 

Datasets 

The evolutionary algorithm was trained using 16 different levels. These levels are 1-1, 1-2, 1-3, 

2-1, 3-1, 3-3, 4-1, 4-2, 5-1, 5-3, 6-1, 6-2, 6-3, 7-1, and 8-1. These levels have a variety of 

challenges of its own ranging from levels with a lot of grounded platforms to levels that have 

huge gaps in between the platforms. There are also 2 levels which are 1-2 and 4-2 that have a 

straight platform at the top that Mario can just run on to skip the whole level. The way the 

algorithm works is that it generates the training while Mario is doing the levels since it doesn’t 

do any offline training. The disadvantage of this is that Mario cannot have perfect genes at the 

start but this is counteracted by tha advantage which is the adaptability and also the smaller 

time consumption of running the algorithm. 

Performance 

The effectiveness of the algorithm was evaluated based on the fitness function, which 

considered various factors such as Mario’s position, completion percentage, remaining time, 

and game status (win or loss). 

Exploration of the Fitness Landscape 

- Initialization: The initial population was generated with random sequences of actions 

(RightRun / RightRunJump). 

- Selection: The fittest individuals from each generation were selected using a fitness 

function. 



- Crossover and Mutation: New generations were created through crossover and 

mutation, maintaining genetic diversity and allowing the exploration of new parts of the 

fitness landscape. 

Control for Overfitting / Underfitting 

- Elitism: Carrying over the top-performing individuals to the next generation ensures that 

high-quality solutions are retained. 

- Mutation Rate: A mutation rate of 5% was chosen to balance exploration and 

exploitation. Too high a rate might lead to random search, while too low a rate might 

cause premature convergence. 

- Generations: Evolving over 30 generations provided a balance between computational 

feasibility and solution quality. 

Evaluation & Reflection 

Experimental Process 

There are a couple of things that I experimented during the process which are : 

- Probability Gene Implementation 

Before going with the sequence of actions implementation, I did an implementation 

where Mario will have an array of probability for his actions and the probability evolves 

overtime as Mario is completing the levels. 

- Adding Enemy Kills as Fitness Function 

I initially added enemy kills as one of the fitness functions but didn’t use it at the 

end because enemy kills are not part of the main objective but it still affected the 

gameplay in some way in a negative way. 

- Using All The Available Actions 

Originally, I used all the available actions but I didn’t end up using it because it affected 

the time and the completion greatly. 

- No Upper & Lower Mario-Y Checks 

I didn’t implement an upper and lower check for Mario for a brick before but when I 

tried implementing it and it turned out to be better, I decided to implement it. 

- No Height Fitness Function 

Originally, I didn’t have a fitness function that rewards mario the higher he is but after I 

implemented it, mario is way more efficient therefore I included it. 

These approaches’ results will be put in the next section for each level. 



Results 

The results of this experiment is from running the level 2 times and getting the best results. If 

the level is not completed, the time left will be marked as N/A. 

Experiment 

Type 

Level Completion 

Percentage 

Status Time Left 

Probability Gene 

Implementation 

1-1 35.19% Lose N/A 

1-2 35.75% Lose N/A 

1-3 12.96% Lose N/A 

2-1 43.92% Lose N/A 

3-1 20.63% Lose N/A 

3-3 9.24% Lose N/A 

4-1 49.17% Lose N/A 

4-2 8.77% Lose N/A 

5-1 19.66% Lose N/A 

5-3 9.14% Lose N/A 

6-1 92.23% Lose N/A 

 

 6-2 18.68% Lose N/A 

6-3 17.86% Lose N/A 

7-1 39.27% Lose N/A 

8-1 39.27% Lose N/A 

Adding Enemy 
1-1 100% Win 50 



Kills as Fitness 

Function 
1-2 100% Win 53 

1-3 100% Win 53 

2-1 93% Timeout N/A 

3-1 100% Win 51 

3-3 92.89% Lose N/A 

4-1 100% Win 48 

4-2 100% Win 52 

5-1 100% Win 51 

5-3 100% Win 52 

6-1 100% Win 51 

6-2 100% Win 49 

6-3 100% Win 53 

7-1 100% Win 49 

8-1 100% Win 40 

Using All the 

Available 

Actions 

1-1 71.34% Timeout N/A 

1-2 100% Win 52 

1-3 84.63% Timeout N/A 

2-1 33.39% Timeout N/A 

3-1 16.74% Timeout N/A 



3-3 34.32% Timeout N/A 

4-1 8.46% Timeout N/A 

4-2 100% Win 50 

 

 5-1 20.63% Timeout N/A 

5-3 36.13% Timeout N/A 

6-1 20.12% Timeout N/A 

6-2 19.16% Timeout N/A 

6-3 18.80% Timeout N/A 

7-1 86.94% Timeout n/A 

8-1 20.60% Timeout N/A 

No Upper & 

Lower Mario-Y 

Checks 

1-1 100% Win 49 

1-2 100% Win 53 

1-3 100% Win 53 

2-1 93.21% Timeout N/A 

3-1 100% Win 52 

3-3 92.89% Lose N/A 

4-1 100% Win 49 

4-2 100% Win 52 

5-1 100% Win 51 



5-3 100% Win 53 

6-1 100% Win 51 

6-2 100% Win 49 

6-3 100% Win 53 

7-1 100% Win 51 

8-1 100% Win 42 

No Height 

Fitness Function 
1-1 100% Win 50 

1-2 100% Win 53 

1-3 48.19% Lose N/A 

2-1 93.21% Timeout N/A 

3-1 100% Win 51 

 

 
3-3 40.62% Lose N/A 

4-1 100% Win 47 

4-2 100% Win 52 

5-1 100% Win 51 

5-3 100% Win 53 

6-1 100% Win 50 

6-2 100% Win 48 

6-3 100% Win 52 



7-1 100% Win 51 

8-1 100% Win 41 

Finalized 

Version 
1-1 100% Win 50 

1-2 100% Win 53 

1-3 100% Win 53 

2-1 93.21% Timeout N/A 

3-1 100% Win 51 

3-3 92.89% Lose N/A 

4-1 100% Win 48 

4-2 100% Win 52 

5-1 100% Win 50 

5-3 100% Win 53 

6-1 100% Win 51 

6-2 100% Win 50 

6-3 100% Win 53 

7-1 100% Win 51 

8-1 100% Win 42 

Reflection 

From each experimentation, it made a feasible solution to make the AI better. The gene 

implementation works well enough for Mario to work but not well enough for Mario to finish the 

levels at all. Adding enemy kills as a fitness function is not really beneficial as well since it slows 



down the completion time of each level. If Mario is using all of the available actions, Mario gets 

timed out very easily. 

This is due to the fact that when Mario is standing on a tall object and the next part of the world 

is not as tall / taller than the object, Mario won’t move forward and will stay still with buttons that 

don’t really move Mario. 

 

When the upper & lower checks for Mario are not implemented, the result of it is not far from the 

finalized version. However, the checks are meant to act as a failsafe just in case Mario could’ve 

done better. Adding the height check in the fitness function really affects the agent on specific 

levels, especially levels with a lot of gaps. Since Mario would be more advantageous if he is 

upwards, it makes sense why Mario would perform better if the higher Mario is, the more reward 

Mario gets. 

The finalized version is arguably not the best solution since it cannot finish level 2-1 at all due to 

the wall, and cannot finish 3-3 consistently, it is still a viable solution due to the speed at which 

Mario finishes the levels. 

Future Work 

There are a couple of things that can be done in future work to give improvements to the 

algorithm for further benefits which are : 

- Action Set Expansion: Incorporating more complex actions (e.g. combinations involving 

jumps and runs with timing considerations) could improve the agent’s performance on 

more challenging levels. This could be incorporated by adjusting the fitness function 

overall as well. 

- Dynamic Fitness Function: Adapting the fitness function to give more weight to strategic 

behaviors depending on how the level is shaped. Since some level doesn’t need specific 

fitness functions and is better off without the fitness function, it would be beneficial if it 

can be adjusted dynamically. 

- Hybrid Approaches: Combining evolutionary strategies with other strategies instead of 

just action sequences such as evolving body parts, neural networks, and more could be 

beneficial and could improve the agent further. 



Conclusion 
The evolutionary algorithm for training a Mario-playing agent, developed with the constraints of 

using only two actions (“RightRun” and “RightRunJump”), demonstrates a promising approach 

to solving levels in a computationally efficient manner. The process of defining genotypes as 

sequences of actions and evolving them through crossover and mutation has proven effective, 

particularly with the incorporation of specific fitness function metrics such as vertical position, 

completion percentage, remaining time, and game status. 
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