
Agent 

Decision Making and 

Planning 

William John Lautama 



 

Planning Model 3 

World Variables 3 

Actions 3 

CollectResources 4 

Preconditions 4 

Effects 4 

DepositResources 7 

Preconditions 7 

Effects 7 

BuildAction 7 

Preconditions 7 

Effects 8 

Goals 8 

Extras 10 

Scatter Method 10 

Trials & Experiments 12 

Planning Approach 13 

Expander 13 

Search 14 

Execution Considerations 16 

Plan Failure 16 

Navigation Failure 17 

Research Sources 18 

 

 

 



Planning Model 

World Variables 

For the world variables, I used the world variables that are already present in the world. The 

main variables that are present are TotalWood, TotalStone, TotalGrain, AgentWood, 

AgentStone, AgentGrain, and NumBuildings. Here are a brief description of what each 

variable represents and why I chose the variable to work in the planning model : 

- TotalWood : This variable keeps track of the total wood that is present in the world. 

In order for me to make the ships have a goal of collecting wood, I have to adjust the 

variable TotalWood. 

- TotalStone : This variable keeps track of the total stone that is present in the world. 

In order for me to make the ships have a goal of collecting stone, I have to adjust the 

variable TotalStone. 

- TotalGrain : This variable keeps track of the total grain that is present in the world. In 

order for me to make the ships have a goal of collecting grain, I have to adjust the 

variable TotalGrain. 

- AgentWood : Each agent has an inventory that they are carrying. In order for me to 

adjust the TotalWood correctly and check what kind of resource the agent has got, I 

have to use AgentWood. This can help with keeping track of the plan, especially if 

the goal revolves around increasing the TotalWood. 

- AgentStone : Each agent has an inventory that they are carrying. In order for me to 

adjust the TotalStone correctly and check what kind of resource the agent has got, I 

have to use AgentStone. This can help with keeping track of the plan, especially if 

the goal revolves around increasing the TotalStone. 

- AgentGrain : Each agent has an inventory that they are carrying. In order for me to 

adjust the TotalGrain correctly and check what kind of resource the agent has got, I 

have to use AgentGrain. This can help with keeping track of the plan, especially if the 

goal revolves around increasing the TotalGrain. 

- NumBuildings : In order for me to make a goal for the builders to keep building, I 

have to keep track of the amount of buildings there are in the world and then keep on 

building more from it. Therefore, I used the NumBuildings variable to keep track and 

to make the goal for the builder when the builder needs to build. 

Actions 

There are 3 actions in total that I implemented in my GOAP planner. It is also worth 

mentioning before that I am using Forward Planning for the GOAP planner so the 

preconditions and the effects are all based on the forward planning method. The justification 

for the plan will be explained in the Planning Approach section. Here are the actions with 

each of their own explanations and justifications for their Preconditions and Effects : 



CollectResources 

Preconditions 

For the preconditions, in order for me to collect the resources, I need to have the ship have 0 

resources in the inventory. This is a very simple concept therefore, I used the AgentWood, 

AgentStone, and AgentGrain variables and made sure that the variables are set to 0. This 

is because due to the rules, the ship isn’t allowed to collect resources when it has a 

resource. Here is a pseudocode of the implementation : 

If AgentWood is 0 and if AgentStone is 0 and if AgentGrain is 0 

Precondition is true 

Precondition is false 

With this implementation, the precondition of the collected resources should work 

accordingly with the GOAP planner. 

Effects 

For the effects, I used a very specific strategy for the GOAP planner. I noticed that building 

universities is a very dominant strategy therefore, I made sure that the ships collect the 

resources that are needed to make universities. But, it's not as simple as for every ship, 

collecting resources needed. It's more complex than that. Since each ship has their own role 

and resources that they can get more efficiently than other ships (except the builder), each 

ship will be focusing first on their own resources, then each ship will help the other 

resources that are not in their specialty. 

For example, WoodCutter ships checks if wood is less than 15 first since it is how much 

needed to make a university. If it is more than 15, then it checks if stone is less than 10, and 

if stone is more than 10 it checks if grain is less than 5. 

This goes on with the stonemason and farmer but with different order with stonecutter going 

With Stonemason going : 

Stone -> Wood -> Grain 

And Farmer going : 

Grain ->Wood -> Stone 

And lastly Builder going : 

Wood ->Stone -> Grain 

This order is not picked randomly but it is set like that so that it checks the resources with 

the least amount of time to collect. After checking all of the resources and if all of the 

resources met the criteria of building the university, there is another layer of checks that I 



added. I noticed that there are only 3 builders in the world therefore the maximum amount of 

resources needed to make universities are only 3 universities at once. So, the total 

resources should only have the needed 3 times the amount needed to make the university. 

So I did the exact same checks as I did previously but I tripled the amount which looks like : 

Woodcutter : 

Wood (Check if less than 45) -> Stone (Check if less than 30) -> Grain (Check if less than 

15) 

Stonemason : Stone -> 

Wood -> Grain 

Farmer : 

Grain -> Wood -> Stone 

Builder : 

Wood -> Stone -> Grain 

*Note that each role checks the same amount of resources as the woodcutter which is 45 

wood, 30 stone, and 15 grain. 

If after all of the checks, everything is more than what is needed, each ship will collect the 

resources that they are the most efficient with except for the builder meaning, 

Woodcutter -> Collect Wood (AgentWood increases) 

Stonemason -> Collect Stone (AgentStone increases) 

Farmer -> Collect Grain (AgentGrain increases) 

Builder -> Collect Wood (AgentWood increases) 

The reason why the builders are collecting wood is because wood is the resource that needs 

the shortest amount of time to collect and since I want the builder to focus on building 

universities, I want it to collect resources in as little time as possible. Here is the pseudocode 

of the implementation : 

If AgentType is Woodcutter 

If TotalWood < 15 

Collect Wood (Increase AgentWood) 

Else If TotalStone < 10 

Collect Stone (Increase AgentStone) 

Else If TotalGrain < 5 

Collect Grain (Increase AgentGrain) 

Else 

If TotalWood < 45 

Collect Wood (Increase AgentWood) 



If TotalStone < 30 

Collect Stone (Increase AgentStone) 

If TotalGrain < 15 

Collect Grain (Increase AgentGrain) 

Else 

Collect Wood (Increase AgentWood) 

Else if AgentType is Stonemason 

If TotalStone < 10 

Collect Stone (Increase AgentStone) 

Else If TotalWood < 15 

Collect Wood (Increase AgentWood) 

Else If TotalGrain < 5 

Collect Grain (Increase AgentGrain) 

Else 

If TotalStone < 30 

Collect Stone (Increase AgentStone) 

If TotalWood < 45 

Collect Wood (Increase AgentWood) 

If TotalGrain < 15 

Collect Grain (Increase AgentGrain) 

Else 

Collect Stone (Increase AgentStone) 

Else if AgentType is Farmer 

If TotalGrain < 5 

Collect Grain (Increase AgentGrain) 

Else If TotalWood < 15 

Collect Wood (Increase AgentWood) 

Else If TotalStone < 10 

Collect Stone (Increase AgentStone) 

Else 

If TotalGrain < 15 

Collect Grain (Increase AgentGrain) 

Else If TotalWood < 45 

Collect Wood (Increase AgentWood) 

Else If TotalStone < 30 

Collect Stone (Increase AgentStone) 

Else 

Collect Grain (Increase AgentGrain) 

It is also worth mentioning that when increasing the AgentWood, AgentStone, or AgentGrain, 

the resource that the ship is going to needs to be checked if it has only 1 left and the ship is 

the ship that usually collects 2 at once, it needs to only collect one regardless for the lack of 



the resource on the resource node. With this implementation, this should help the ship 

collect the resources as efficiently as possible to generate more points in the simulation. 

DepositResources 

Preconditions 

The way the precondition works for the DepositResources is very simple. It needs to check if 

the ship has any type of resources in the inventory. If it does, it returns the precondition as 

true. This is because based on the rules, the ship needs to immediately deposit the resource 

after collecting it and this can be done by checking if AgentWood, AgentStone or AgentGrain 

is more than 0. Here is the pseudocode of the implementation : 

If AgentWood > 0 or AgentStone > 0 or AgentGrain > 0 

Return true 

Return false 

By using this precondition, this can ensure that the ships deposit the resources as soon as 

they collect it properly. 

Effects 

The effects of the DepositResources action is very simple. It basically adds up the 

TotalWood, TotalStone and TotalGrain variables with the AgentWood, AgentStone, and 

AgentGrain variables. This is done because each ship can only carry 1 type of resources 

each time so if each resource is added, it still won't affect the uncollected resources since it 

will just increase it by 0. Then, the AgentWood, AgentStone, and AgentGrain needs to be set 

to 0 to simulate the agent emptying the inventory. Here is the pseudocode of the 

implementation : 

TotalWood += AgentWood 

AgentWood = 0 

TotalStone += AgentStone 

AgentStone = 0 

TotalGrain += AgentGrain 

AgentGrain = 0 

By implementing these simple effects, this will simulate the ships emptying and depositing 

the resources into the world properly through the GOAP planner. 

BuildAction 

Preconditions 

The precondition for the BuildAction is also very simple. It checks to see if the ship has 0 

resources all around (AgentWood, AgentStone, AgentGrain) since builders are not allowed 



to build if they have 0 resources. Then, it also checks to see if the resources are enough to 

build the building needed which is the university since the university gives the most points. 

Here is the pseudocode of the implementation : 

If (AgentWood is 0 and AgentStone is 0 and AgentGrain is 0) 

If (TotalWood >= 15 and TotalStone >= 10 and TotalGrain >= 5) 

Return true 

Return false 

This implementation of the precondition will make for a proper and working build action for 

the ships. 

Effects 

The effects of the BuildAction are also very simple. It adjusts the value of the TotalWood, 

TotalStone, and TotalGrain by the amount that is needed to make a university. Then, it adds 

the NumBuildings variable by 1 to keep track of the building count to set it up for the goal. 

This is because the goal that I want to implement is to make more universities that are 

currently present therefore, keeping track of the NumBuildings variable is needed. Here is 

the pseudocode of the implementation : 

TotalWood -= 15 

TotalStone -= 10 

TotalGrain -= 5 

NumBuildings += 1 

Although this is very simple, it is highly effective when deciding whether the builder is going 

to build or not. 

Goals 

Each agent type has their own set of goals that they follow. I made 3 separate functions 

which are called GetWoodGoal, GetStoneGoal, and GetGrainGoal. Each of these functions 

serves its own purpose which are : 

GetWoodGoal : Get more wood than the world currently have 

GetStoneGoal : Get more stone than the world currently have 

GetGrainGoal : Get more grain than the world currently have 

These functions then go into the same checks as the one on collecting resources with it 

checking the amount of resources needed based on the checks. This means that each 

ship’s priority is based on their type with Woodcutters focusing on wood, Stonemasons 

focusing on stone, and Farmers focusing on grain but being able to collect other resources 

based on what resources are needed based on the checks. Lastly, the Builder’s main priority 



is building more buildings than the current number of buildings in the world. But if the builder 

is not able to build, the builder’s priority will be collecting the resources the same way a 

woodcutter would do since wood takes the shortest amount of time to collect. Here is the 

pseudocode of the implementation : 

If AgentType is WoodCutter 

If TotalWood < 15 

GetWoodGoal 

Else If TotalStone < 10 

GetStoneGoal 

Else If TotalGrain < 5 

GetGrainGoal 

Else 

If TotalWood < 45 

GetWoodGoal 

Else If TotalStone < 30 

GetStoneGoal 

Else If TotalGrain < 15 

GetGrainGoal 

Else 

GetWoodGoal 

Else if AgentType is StoneMason 

If TotalStone < 10 

GetStoneGoal 

Else If TotalWood < 15 

GetWoodGoal 

Else If TotalGrain < 5 

GetGrainGoal 

Else 

If TotalStone < 30 

GetStoneGoal 

Else If TotalWood < 45 

GetWoodGoal 

Else If TotalGrain < 15 

GetGrainGoal Else 

GetStoneGoal 

Else if AgentType is Farmer 

If TotalGrain < 5 

GetGrainGoal 

Else If TotalWood < 15 

GetWoodGoal 

Else If TotalStone < 10 

GetStoneGoal Else 

If TotalGrain < 15 

GetGrainGoal 



Else If TotalWood < 45 

GetWoodGoal 

Else If TotalStone < 30 

GetStoneGoal 

Else 

GetGrainGoal 

Else 

If TotalWood < 15 

GetWoodGoal 

Else If TotalStone < 10 

GetStoneGoal 

Else If TotalGrain < 5 

GetGrainGoal 

Else 

If TotalWood < 45 

GetWoodGoal 

Else If TotalStone < 30 

GetStoneGoal 

Else If TotalGrain < 15 

GetGrainGoal 

Else 

GetWoodGoal 

This implementation will allocate the goal properly so that the ships can get the proper goal 

for the GOAP planner to search and get an optimal plan to reach the goal. 

Extras 

Scatter Method 

To collect resources, I set it up so that the initial step of the ship is to scatter towards the four 

corners of the world. This only runs once at the start and never runs again. This is done to 

scatter the ship’s location and for each ship to go to the resource location in their own region 

effectively. The effect of this is not major but it does affect the simulation in getting points in a 

positive way. Here is the pseudocode of the implementation : 

Int InitialSetupCount++; 



GridNode* UpperRight = Initialise upper right coordinates 

GridNode* UpperLeft = Initialise upper left coordinates 

GridNode* BottomRight = Initialise bottom right coordinates 

GridNode* BottomLeft - Initialise bottom left coordinates 

Float ShortestPath = 99999; 

AActor* ClosestResource = nullptr 

TArray of resources as actors initialised; 

Get all resource actors and store it into TArray of resources 

For (Resources TArray) 

If Resource is not valid 

Continue; 

If (Resource == ResourceType) 

Get all ship actors 

For (Ship Array) 

If Resource’s location == Ship’s location 

TempResource = Resource 

CurrentPath = distance of ship and resource 

If (CurrentPath < ShortestPath and Resource is not 

TempResource) 

If (InitialSetupCount % 3 == 0) 

{ 

FirstAgent = Woodcutter 

SecondAgent = Stonemason 

ThirdAgent = Farmer 

FourthAgent = Builder 

} 

Else If (InitialSetupCount % 3 == 1) 

{ 

FirstAgent = Stonemason 

SecondAgent = Farmer 

ThirdAgent = Builder 

FourthAgent = Woodcutter 

} 

Else if (InitialSetupCount % 3 == 2) 

{ 

FirstAgent = Farmer 

SecondAgent = Builder 

ThirdAgent = Woodcutter 

FourthAgent = Stonemason 



} 

Else if (InitialSetupCount % 3 == 3) 

{ 

FirstAgent = Builder 

SecondAgent = Woodcutter 

ThirdAgent = Stonemason 

FourthAgent = Farmer 

} 

AShip* ShipClass = Cast ship 

If ShipClass’s agent type == FirstAgent if(Resource 

is in upper right) 

ShortestPath = CurrentPath 

ClosestResource = Resource 

Else If ShipClass’s agent type == SecondAgent 

if(Resource is in upper left) 

ShortestPath = CurrentPath 

ClosestResource = Resource 

Else If ShipClass’s agent type == ThirdAgent 

if(Resource is in Bottom right) 

ShortestPath = CurrentPath 

ClosestResource = Resource 

Else If ShipClass’s agent type == FourthAgent 

if(Resource is in bottom left) 

ShortestPath = CurrentPath 

ClosestResource = Resource 

Return ClosestResource 

Through this implementation, I will be able to scatter the ship efficiently at the start of the 

simulation for more effective resource collection. 

Trials & Experiments 

Throughout the development, I experimented with different methods of the planning mode. 

At first, the planning model was to make the ships get their own respective resources that 

they are efficient at and make the builder get wood and build universities. The result of this 

implementation is approx. 15.000 - 17.000 points. This is not a bad result but I noticed the 

overflowing unused resources so I decided to optimise it. 

The next method that I used is checking each of the ship’s own resources matching their 

agent type and then helping the others to at least make 1 university. This is a more 

optimised result and the result from it is approx. 22.000 - 24.000 points. This is also not a 

bad result but I noticed that there are still overflowing resources so I optimised it more using 



the current planning model that I am using and the result of it is approx. 25.000 - 27.000 

points which is a way better result compared to the results that were present before. 

Planning Approach 

Expander 

For the expander, I used a forward search approach, where the expander function generates 

successors by working forward from the current state. In theory, backwards search is more 

efficient, but forward search is easier to understand conceptually in terms of preconditions 

and effects. The reason for this is because backwards search expands less nodes and 

forward nodes expand unnecessary nodes to get to the goal. 

Due to the time constraints, I wasn’t able to implement backwards search but I was able to 

implement forwards search properly into the simulation. There is a function called Expand 

who’s job is to get the neighbour nodes that are currently present in the planner. Here is the 

pseudocode of the implementation of the expand function : 

TArray GOAPNode* ConnectedNodes 

TArray UHLAction AllowedActions 

For (AvailableActions) 

UHLAction* CurrentAction = Make UHL action object of Ship 

If (CheckPrecondition) 

Add CurrentAction to AllowedAction 

For (AllowedActions) 

GOAPNode* NextNode = new GOAPNode() 

NextNode’s State = Node’s State 

If (SetupAction) 

AllowedAction->ApplyEffects(Ship, NextNode->State) 

NextNode->Action = AllowedAction 

NextNode->RunningCost = 0 

NextNode->Parent = Node 

ConnectedNodes.Add(NextNode) 

Return ConnectedNodes 

The way this pseudocode works is that it goes through all the available actions. Then, it 

checks the precondition of the available actions and if it returns true, add it into the actions 

that the ships are allowed to do. After that, it goes through all the AllowedActions and 

changes the NextNode’s state into the current Node’s state. It then checks if the SetupAction 

goes through correctly and applies the effects of it into the ship and then adds the 



AllowedAction as the next action with the Running Cost of 0 and sets the parent of the 

NextNode to the current Node. Lastly, it adds NextNodes to the connectedNodes and 

returns the ConnectedNodes array overall. 

Search 

The way the planner works to find a solution is similar to how A* works for pathfinding but 

instead of pathfinding it works on states. I used forward planning so it starts from the start 

state but knows what the goal is. It uses the cost of each action which for the collect I set to 

2 but for the rest I set to 1. Here is the pseudocode for the search planner : 

Empty Ship’s planned actions 

GOAPNode* GoalNode = new GOAPNode(); 

GoalConditions = PickedGoal 

GoalState 

For (Goal conditions) 

Add to GoalState 

GoalNode’s state = GoalState 

GoalNode’s action = null 

GoalNode’s running cost = 0 

GoalNode’s parent = null 

StartNode = new GOAPNode 

StartNode’s state = WorldState 

StartNode’s action = null 

StartNode’s running cost = 0 

StartNode’s parent = null 

Initialise open and closed list 

Open.Push(StartNode) 

Int MaxRunningCost = 10 

While (Open.Num() > 0) 

Float SmallestF = gets the F value to the goal state 

Int SmallestFIndex = 0 

For (Open list) 

Int CurrentF = get current F value for current state 

If (currentF < SmallestF) 



SmallestF = CurrentF 

SmallestFIndex = i 

if(CurrentNode’s runningcost > MaxRunningCost) 

Return false 

if(current state meets the goal) TArray<UHLAction*> 

ActionsToTake while(CurrentNode’s parent) 

ActionsToTake.Add(CurrentNode’s action) 

CurrentNode = CurrentNode’s parent 

For (ActionsToTake.Num()) 

Add ActionsToTake to Ship’s PlannedActions 

Return true 

TArray<GOAPNode*> ConnectedNodes = Expand(CurrentNode, Ship) 

For (ConnectedNodes.Num()) 

Int OpenTempTracker = 0 

Int ClosedTempTracker = 0 

For (Openlist) if(it's not the same state as the one in the 

open list 

and connectednodes) 

OpenTempTracker++ 

For (ClosedList) if(it's not the same state as the one in the 

closed list 

and connectednodes) 

ClosedTempTracker++ 

If (ClosedTempTracker == Closed.Num()) 

Int PossibleG = CurrentNode’s running cost + Connected 

Node’s action cost 

Bool bPossibleGBetter = false 

if(OpenTempTracker == Open.Num()) 

Add ConnectedNode to open list 

bPossibleGBetter = true 

Else if (PossibleG < ConnectedNode’s running cost) 

bPossibleGBetter = true 

If (bPossibleGBetter) 

ConnectedNode’s parent = CurrentNode 

ConnectedNode’s running cost = PossibleG 

Return false 



Basically, the way it works is that it empties out the ship’s planned actions. Then, it initialises 

the goal node based on the goal conditions. It also initialises the start node depending that 

will be connected to the goal node. After that it initialises the closed and open list that is 

going to be used in the search algorithm. It also initialises the max running cost at 10 so that 

the plan’s maximum cost is 10. First, it gets the F value of the goal state and then the 

smallest F index. Then, it loops through an open list to set the smallest F value. It also takes 

into account the running cost with the maximum cost to make sure that the cost doesn’t 

exceed the maximum cost. 

Then, if the current state meets the goal state, It parents the nodes so that it can have a 

sequence of action leading to the goal state. Then, It adds the actions in the states that are 

parented into the array of the ship’s planned actions. 

It also goes through the neighbour nodes of the states and then decides which nodes are 

the best to the goal by tracking the open and closed list. This is done to figure out what the 

best G value is of all the actions that are connected to the current nodes. Then, it changes 

the G value based on what is calculated in the statements of the trackers of the open and 

closed list. 

Execution Considerations 

Plan Failure 

In case a high-level action fails to proceed as expected (e.g. resource location is depleted, 

or an agent is unable to reach a resource slot), the planner will detect this failure and replan 

from the current world state. The replanning process will generate a new sequence of 

actions that takes into account the updated world state and any changes in resource 

availability or agent location. To handle plan failures more effectively, I implemented a simple 

boolean variable that cancels the plan when the target needs to be changed. This boolean is 

changed when the ship needs to change resources because the resource is either depleted 

or occupied. I also implemented extra checks of the new target that needs to be found if the 

resource is occupied by another ship that is called in the Replan function. Here is the 

pseudocode for the ship replan that is in the Replan function : 

if(BlockedNode is a resource node) if(BlockedResources 

array is 0) 
Add BlockedNode’s resource to array 

for(BlockedResources) if(BlockedNode’s resource is in 

BlockedResources array) bBlockedResourceCheck = false Break 
Else bBlockedResourceCheck = true 

if(bBlockedResourceCheck) 
Add BlockedNode’s Resource to BlockedResources array 

bBlockedResourceCheck = false 

If (Ship has PlannedActions) 
Empty Path 



if(Ship’s target exist) 
TempTarget = Target 
Target = Null 
Target = CalculateNearestGoal() 
Cancel execute 
Cancel setup 
SetupAction() 

Break 

Navigation Failure 

To handle navigation failure, I used a replan function to avoid collision with other ships. 

Since I want the ships to not collide with each other as much as it can, it needs to replan the 

pathfinding algorithm but with an adjustment. The adjustment being re-running A* but with a 

blocked node that the algorithm cannot go through / has to skip through. The other thing to 

mention is the algorithm should also change targets if the resource is occupied with another 

ship. I made it a very simple algorithm that checks if the blocked node is a resource node. 

Then, it changes the ship’s target into another resource with the same resource type. This is 

triggered every time the ship looks 1 step ahead and it collides with the other ship on that 1 

step ahead that was looked into. 

Although this is not the best solution, due to the time constraint, I decided to implement this 

solution to the simulation. Here is the pseudocode of the implementation in the Replan 

function for navigation : 

Priority_queue OpenQueue; 

Clear Ship’s path; 

ResetAllNodes(); 

GridNode* CurrentNode = Get current ship’s grid location 
G = 0; 
H = CalculateManhattanDistance between goal and start 
F = G + H 
CurrentNode set is in open queue OpenQueue.Push(CurrentNode) 

while(OpenQueue.size() > 0) 
CurrentNode = OpenQueue.top(); 
OpenQueue.pop(); 
CurrentNode set is not in open queue 

if(CurrentNode == Resource) 
Goal Found 
Break 

TArray<GridNode*> Neighbours = Get neighbours node 

For (Neighbours) 
GridNode* CurrentNeighbour = Neighbours[j]; 
If (CurrentNeighbour is in closed) 

Continue; 
If (CurrentNeighbour == BlockedNode) 

Replan if BlockedNode is a resource that is occupied Continue 
Bool bPossibleGIsBetter = false 
Int PossibleG = CurrentNode’s G + CurrentNeighbour’s travel cost 

if(CurrentNeighbour is not in open) bPossibleGIsBetter = true 



Else if(PossibleG < CurrentNeighbour’s G) 

bPossibleGIsBetter = true 

if(bPossibleGIsBetter) 
CurrentNeighbour’s parent = CurrentNode 
CurrentNeighbour’s G = PossibleG 
CurrentNeighbour’s H = CalculateManhattanDistance between goal and Node 
CurrentNeighbour’s F = CurrentNeighbour’s G + CurrentNeighbour’s H 
CurrentNeighbour is set to in open queue 
OpenQueue.push(CurrentNeighbour) 

This pseudocode represents the collision avoidance of when the ship is about to collide with 

another ship. Parts of the code also correlates with replanning the target when the target is 

occupied with a ship. 

Research Sources 
Park, J., Lu, F.-C., & Hedgcock, W. M. (2017). Relative Effects of Forward and Backward 

Planning on Goal Pursuit. Psychological Science, 28(11), 1620–1630. 

https://doi.org/10.1177/0956797617715510 

 Goal Oriented Action Planning for a Smarter AI | Envato Tuts+. (2014, April 23). Game 

Development Envato Tuts+. 

https://gamedevelopment.tutsplus.com/goal-oriented-action-planning-for-a-smarter-ai--cms-2 

0793t 

Orkin, J., & Productions, M. (n.d.). Applying Goal-Oriented Action Planning to Games 

Applying Goal-Oriented Action Planning to Games. from 

https://citeseerx.ist.psu.edu/document?doi=0c35d00a015c93bac68475e8e1283b02701ff46b 

&repid=rep1&type=pdf 

Total AI. (n.d.). Totalai.org. http://totalai.org/doc-goap.html 

Bjarnolf, P. & Institutionen för kommunikation och information. (2008). Threat analysis using 

Goal-Oriented action Planning. In Examensarbete I Datalogi 30hp [Thesis]. 

https://www.diva-portal.org/smash/get/diva2:2228/FULLTEXT01.pdf 

https://doi.org/10.1177/0956797617715510
https://gamedevelopment.tutsplus.com/goal-oriented-action-planning-for-a-smarter-ai--cms-20793t
https://gamedevelopment.tutsplus.com/goal-oriented-action-planning-for-a-smarter-ai--cms-20793t
https://gamedevelopment.tutsplus.com/goal-oriented-action-planning-for-a-smarter-ai--cms-20793t
https://citeseerx.ist.psu.edu/document?doi=0c35d00a015c93bac68475e8e1283b02701ff46b&repid=rep1&type=pdf
https://citeseerx.ist.psu.edu/document?doi=0c35d00a015c93bac68475e8e1283b02701ff46b&repid=rep1&type=pdf
http://totalai.org/doc-goap.html
https://www.diva-portal.org/smash/get/diva2:2228/FULLTEXT01.pdf

